
Software Security

Application-level sandboxing

Erik Poll

1

Overview

1. Compartementalisation

2. Classic OS access control

• compartementalisation between processes

• Chapter 2 of lecture notes

3. Language-level access control

• compartementalisation within a process

• by sandboxing support in safe programming languages

• notably Java and .NET

• Chapter 4 of lecture notes

4. Hardware-based sandboxing

• compartementalisation within a process,

also for unsafe languages

2

1. Compartmentalisation

3

Compartmentalisation in ships

4

Compartmentalisation examples

Compartmentalisation can be applied on many levels

• In an organisation

– eg terrorist cells in Al Qaida or extreme animal rights group

• In an IT system

– eg different machines for different tasks

• On a single computer, eg

– different processes for different tasks

– different user accounts for different task

– use virtual machines to isolate tasks

– partition your hard disk & install 2 OSs

• Inside a program

– different ‘modules’ with different tasks

5

Compartmentalisation example: SIM card in phone

A SIM provides some trusted functionality (with a small TCB)

to a larger untrusted application (with a larger TCB)

6

main CPU

OS

trusted

functionality

untrusted

applicationcalls

Compartmentalisation for security

1. Divide systems into chunks – aka compartments, components,…

Different compartments for different tasks

2. Give minimal access rights to each compartment

aka principle of least privilege

3. Have strong encapsulation between compartments

so flaw in one compartment cannot corrupt others

4. Have clear and simple interfaces between compartments

exposing minimal functionality

Benefits:

a. Reduces TCB (Trusted Computing Base) for certain security-

sensitive functionality

b. Reduces the impact of any security flaws.

7

Sandboxing

Sandboxing aka access control the standard way to provide

compartmentalisation.

It involves

1. rights/permissions

2. parties (eg. users, processes, components)

3. policies that give rights to parties

– specifying who is allowed to do what

4. runtime monitoring to enforce policies

8

2. Operating System (OS) Access Control

See also Chapter 2 of the lecture notes

9

Classical OS-based security (reminder)

10

Hardware (CPU, memory, I/O peripherals)

process

A

OS (incl. file system)

process

B

access

control

rights

&

policies

Signs of OS access control

11

Problems with OS access control

1. Size of the TCB

The Trusted Computing Base for OS access control is

so there will be security flaws in the code.

The only safe assumption: a malicious process on a typical OS

(Linux, Windows, BSD, iOS, Android, ...) will be able to get

superuser/root/administrator rights.

2. Too much complexity

The languages to express access control policy are very complex,

so people will make mistakes

3. Not enough expressivity / granularity

Eg the OS cannot do access control within process, as processes

as the ‘atomic’ units

Note: fundamental conflict between the need for expressivity

and the desire to keep things simple

12

huge

Example complexity problem (resulting in privilege escalation)

UNIX access control uses 3 permissions (rwx) for 3 categories of

users (owner,group,others), for files & directories.

Windows XP uses 30 permissions, 9 categories of users, and 15 kinds

of objects.

Example common configuration flaw in XP access control, in 4 steps:

1. Windows XP uses Local Service or Local System services for

privileged functionality (where UNIX uses setuid binaries)

2. The permission SERVICE_CHANGE_CONFIG allows changing the executable

associated with a service

3. But... it also allows to change the account under which it runs, incl. to
Local System, which gives maximum root privileges.

4. Many configurations mistakenly grant SERVICE_CHANGE_CONFIG

to all Authenticated Users...

13

privilege escalation in Windows XP

Unintended privilege escalation due to misconfigured access rights of

standard software packages in Windows XP:

[S. Govindavajhala and A.W. Appel, Windows Access Control Demystified, 2006]

Moral of the story (1) : KEEP IT SIMPLE

Moral of the story (2) : If it is not simple, check the details

14

Limits in granularity

OS can’t distinguish components within process, so can’t differentiate

access control for them, or do access control between them

Hardware (CPU, memory, I/O peripherals)

process A

Operating System

process B

trusted

module A

untrusted

module B

15

??

?

?

Limitation of classic OS access control

• A process has a fixed set of permissions. Usually, all permissions

of the user who started it

• Execution with reduced permission set may be needed

temporarily when executing untrusted or less trusted code.

For this OS access control may be too coarse.

Remedies/improvements

• Allowing users to drop rights when they start a process

• Asking user approval for additional permissions at run-time

• Using different user accounts for different applications,

as Android does

• Split a process into multiple processes with different access

rights

16

The Chrome browser process is split into multiple OS processes

• (Complex!) rendering engine is black box for browser kernel

• Plugins also run as different processes

• Running a new process per domain can enforce the restrictions of the

SOP (Same Origin Policy)

• Advantage: TCB for certain operations drastically reduced

Example: compartementalisation in Chrome

rendering engine:
handling HTML, CSS

javascript, XML, DOM,

rendering

rendering engine:
handling HTML, CSS

javascript, XML, DOM,

rendering

browser kernel:
cookie & passwd database, network

stack, TLS, window management

rendering engine:
handling HTML, CSS

javascript, XML, DOM,

rendering

17

One rendering engine per tab,
plus one for trusted content
(eg HTTPS certificate warnings)

No access to local file system
and to each other

One browser kernel
with full user privileges

rendering engine:
handling HTML, CSS

javascript, DOM,

rendering images

2. Language-level

access control

Chapter 4 of the lecture notes

18

Access control at the language level

In a safe programming language, access control can be provided

within a process, at language-level, because interactions between

components can be restricted & controlled

This makes it possible to have security guarantees in the presence of

untrusted code (which could be malicious or just buggy)

• Without memory-safety, this is impossible. Why?

Because B can access any memory used by A

• Without type-safety, it is hard. Why?

Because B can pass ill-typed arguments to A's interface

process

trusted

module A

untrusted

module B

19

Language-level sandboxing

Hardware (CPU, memory, I/O peripherals)

process A

Operating System

process B

trusted

module A

untrusted

module B

Execution engine

(eg Java or . NET VM)

20

Extensible applications

Sandboxing individual parts of a program is useful if you trust some

parts less than others

This is especially the case for extensible applications, where at

runtime an application can extend itself

21

Resources

OS

Internet

P

Code extension

Example: browser plugin

22

Resources

OS

Internet

Firefox

Browser plugin

libraries

Example: Java applet

23

Resources

OS

Internet

Firefox

Java applet

libraries

Java VM

Example: JavaCard smartcard

24

smartcard hardware

Java Card VM & APIs

mobile

phone

network

applet

1code download

applet

2

applet

n

controlled by

digital signatures

on code

Sand-boxing with code-based access control

Language platforms such as Java and .NET provide

code-based access control

 this treats different parts of a program differently

 on top of the user-based access control of the OS

Ingredients for this access control, as for any form of access control

1. permissions

2. components (aka protection domains)

• in traditional OS access control, this is the user ID

3. policies

• which gives permissions to components, ie.

who is allowed to do what

25

Code-based access control in Java

26

Example configuration file that expresses a policy

grant

codebase "http://www.cs.ru.nl/ds", signedBy "Radboud",

{ permission

java.io.FilePermission "/home/ds/erik","read";

};

grant

codebase "file:/.*"

{ permission

java.io.FilePermission "/home/ds/erik","write";

}

protection domains

Protection domains

• Protection domains based on evidence

1. Where did it come from?

• where on the local file system (hard disk) or where on the

internet

2. Was it digitally signed and if so by who?

• using a standard PKI

• When loading a component, the Virtual Machine (VM) consults the

security policy and remembers the permissions

27

Permissions

• Permissions represent a right to perform some actions.

Examples:

– FilePermission(name, mode)

– NetworkPermission

– WindowPermission

• Permissions have a set semantics, so one permission can be a

superset of another one.

– E.g. FilePermission("*", "read")

includes FilePermission("some_file.txt", "read")

• Developers can define new custom permissions.

28

Virtual Machine

package trusted;

class Trusted {

void m1 ()

{

System.delete file;

}

}

package evil;

class Bad {

void f1 () { System.delete file; }

}

29

Complication: methods calls

30

Virtual Machine

package trusted;

class Trusted {

void m1 ()

{

System.delete file;

}

}

package evil;

class Bad {

Trusted t;

void f1 () { System.delete file; }

void f2()

{ t.m1(); }

}

Should

the file be

deleted ?

Complication: method calls

There are different possibilities here

1. allow action if top frame on the stack has permission

2. only allow action if all frames on the stack have permission

3.

Pros? Cons?

1. is very dangerous: a class may accidentally expose dangerous

functionality

2. is very restrictive: a class may want to, and need to, expose some

dangerous functionality, but in a controlled way

More flexible solution: stackwalking aka stack inspection

31

Exposing dangerous functionality, (in)securely

Class Trusted{

public void unsafeMethod(File f){

delete f; } // Could be abused by evil caller

public void safeMethod(File f) {

.... // lots of checks on f;

if all checks are passed, then delete f;}

// Cannot be abused, assuming checks are bullet-proof

public void anotherSafeMethod(){

delete ″/tmp/bla″; }

// Cannot be abused, as filename is fixed.

// Assuming this file is not important..

}

32

Using visibility to control access?

Class Trusted{

private void unsafeMethod(File f){

delete f; } // Could be abused by evil caller

public void safeMethod(File f) {

.... // lots of checks on f;

if all checks are passed, then delete f;}

// Cannot be abused, assuming checks are bullet-proof

public void anotherSafeMethod(){

delete ″/tmp/bla″; }

// Cannot be abused, as filename is fixed.

// Assuming this file is not important..

}

33

Making the unsafe method

private & hence invisible to

untrusted code helps, but is

error-prone. Some public

method may call this private

method and indirectly

expose access to it

Hence: stackwalking

Stack walking

• Every resource access or sensitive operation protected by a

demandPermission(P) call for an appropriate permission P

– no access without asking permission!

• The algorithm for granting permission is based on stack
inspection aka stack walking

Stack inspection first implemented in Netscape 4.0,

then adopted by Internet Explorer, Java, .NET

34

Components and permissions in VM memory

35

Component 2
Permissions

of component 2

System

Component

all

Permissions

Component 1
Permissions

of component 1

36

Process

C1 C2

C3

C5

C4

C8

C7

C6

Thread

Protection

domains

Stack walking: basic concepts

Suppose thread T tries to access a

resource

Basic algorithm:

access is allowed iff

all components on the call stack have

the right to access the resource

ie

– rights of a thread is the

intersection of rights of all

outstanding method calls

37

C3

C2

C7

C5

Stack for thread T:

C5 called by C7

called by C2 and C3

Stack walking

Basic algorithm is too restrictive in some cases

E.g.

– Allowing an untrusted component to delete some specific files

– Giving a partially trusted component the right to open

speciallay marked windows (eg. security pop-ups) without

giving it the right to open arbitrary windows

– Giving an app the right to phone certain phone numbers (eg.

only domestic ones, or only ones in the mobile’s phonebook)

38

Stack walk modifiers

• Enable_permission(P):

– means: don’t check my callers for this permission, I take full

responsibility

– This is essential to allow controlled access to resources for

less trusted code

• Disable_permission(P):

– means: don’t grant me this permission, I don’t need it

– This allows applying the principle of real privilege (ie. only

givie or ask the privileges really needed, and only when they

are really needed)

39

Stack walking: algorithm

On creating new thread:

new thread inherit access control context of creating thread

DemandPermission(P) algorithm:

1. for each caller on the stack, from top to bottom:

if the caller

a) lacks Permission P: throw exception

b) has disabled Permission P: throw exception

c) has enabled Permission P: return

2. check inherited access control context

40

Stack walk modifiers: examples

41

PD1 PD3PD2 demandPermission(P1)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P1) fails because PD1 does not have

Permission P1

Will DemandPermission(P1) succeed ?

callscalls

Stack walk modifiers: examples

42

PD1 PD3PD2 demandPermission(P1)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P1) succeeds

EnablePermission(P1)

Will DemandPermission(P1) succeed ?

callscalls

Stack walk modifiers: examples

43

PD1 PD3PD2 demandPermission(P2)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P2) fails

DisablePermission(P2)

Will DemandPermission(P2) succeed ?

callscalls

Stack walking: algorithm

On creating new thread:

new thread inherit access control context of creating thread

DemandPermission(P) algorithm:

1. for each caller on the stack, from top to bottom:

if the caller

a) lacks Permission P: throw exception

b) has disabled Permission P: throw exception

c) has enabled Permission P: return

2. check inherited access control context

44

Using stack walking to restrict access to functionality

Class Trusted{

public void unsafeMethod(File f){

delete f; }

public void safeMethod(File f) {

... // lots of checks on f;

enablePermission (FileDeletionPermission);

delete f;}

public void anotherSafeMethod(){

enablePermission (FileDeletionPermission);

delete “/tmp/bla”; }

}

“I take full

responsibility

for my callers”

45

Typical programming pattern

The typical programming pattern in privileged components,

esp. in public methods accessible by untrusted code:

public methodExposingScaryFunctionality (A a, B b){

....; do security checks on arguments a and b

enable privileges (P1,P2);

do the dangerous stuff that needs these privileges;

disable privileges;

.... }

in keeping with the principle of least privilege

46

Spot the security flaw?

Class Good{

public void m1 (String filename) {

lot of checks on filename;

enablePermission (FileDeletionPermission);

delete filename;}

public void m2(byte[] filename){

lot of checks on filename;

enablePermission (FileDeletionPermission);

delete filename;}

}

47

m2 is insecure,

because byte arrays

are mutable;

attackers can could

change the value of

filename after the

checks, in a multi-

threaded setting

TOCTOU attack (Time of Check, Time of Use)

Class Good{

public void m1 (String filename) {

lot of checks on filename;

enablePermission (FileDeletionPermission);

delete filename;}

public void m2(byte[] filename){

lot of checks on filename;

enablePermission (FileDeletionPermission);

delete filename;}

}

48

m1 is secure, because

Strings are immutable
(assuming there are no TOCTOU

vulnerabilities in the underlying file

systems, eg due to symbolic links)

Need for privilege elevation

Note the similarity between

• Methods which enable some permissions

• which temporarily raise privileges

• Linux setuid root programs or Windows Local System Services

• which can be started by any user, but then run in admin mode

• OS system calls invoked from a user program

• which cause a switch from user to kernel model

All are trusted services that elevate the privileges of their clients

– hopefully in a secure way...

– if not: privilege escalation attacks

In any code review, such code obviously requires extra attention!

49

Hardware-based sandboxing

- also for unsafe languages

50

Sandboxing in unsafe languages

• Unsafe languages cannot provide sandboxing at language level

• An application written in an unsafe language could still use OS

sandboxing by splitting the code across different processes (as

e.g. Chrome does)

• An alternative approach:

use sandboxing support provided by underlying hardware,

to impose memory access restrictions inside a process

51

Example: security-sensitive code in larger program

52
Example from [N. van Ginkel et al, Towards Safe Enclaves, HotSpot 2016]

Bugs or

malicious code

anywhere in the

program could

access the

high-security data

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret (int pin_guess) {

if (tries_left > 0) {

if (PIN == pin_guess) {

tries_left = 3; return secret; }

else {

tries_left--; return 0 ;}

} }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c

Isolating security-sensitive code with secure enclaves

53

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret (int pin_guess) {

if (tries_left > 0) {

if (PIN == pin_guess) {

tries_left = 3; return secret; }

else {

tries_left--; return 0 ;}

} }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c
Enclave

Isolating security-sensitive code with secure enclaves

54

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret (int pin_guess) {

if (tries_left > 0) {

if (PIN == pin_guess) {

tries_left = 3; return secret; }

else {

tries_left--; return 0 ;}

} }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c
Enclave

untrusted code

cannot access

sensitive data

Isolating security-sensitive code with secure enclaves

55

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret (int pin_guess) {

if (tries_left > 0) {

if (PIN == pin_guess) {

tries_left = 3; return secret; }

else {

tries_left--; return 0 ;}

} }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c
Enclave

Only allowed entry point

(for get_secret)

Untrusted code should not be

able to jump to the middle of

get_secret code (recall return-to-

libc & ROP attacks)

Secure enclaves

• Enclaves isolates part of the code together with its data

– Code outside the enclave cannot access the enclave's data

– Code outside the enclave can only jump to valid entry points for

code inside the enclave

• Less flexible than stack walking:

– Code in the enclave cannot inspect the stack as the basis for

security decisions

– Not such a rich collection of permissions, and programmer

cannot define his own permissions

• More secure, because

– OS & Java VM (Virtual Machine) are not in the TCB

– Also some protection against physical attacks is possible

56

Enclaves using Intel SGX

Intel SGX provides hardware support for enclaves

• protecting confidentiality & integrity of enclave’s code & data

• providing a form of Trusted Execution Enviroment (TEE)

This not only protects the enclave from the rest of the program,

but also from the underlying Operating System!

• Hence example use cases include

– Running your code on cloud service you don’t fully trust: cloud

provider cannot read your data or reverse-engineer your code

– DRM (Digital Rights Management): decrypting video content on

user’s device without user getting access to keys

• Some concerns about Intel’s business model & level of control:

will only code signed by Intel be allowed to run in enclaves?

57

Execution-aware memory protection

A more light-weight approach to get secure enclaves

• access control based on the value of the program counter,

so that some memory region can only be accessed by a specific

part of the program code

• This provides similar encapsulation boundary inside process as

SGX

– Eg. crypto keys can be made only accessible from the module with the

encryption code

– The possible impact of an buffer overflow attack is the rest of the code

is then reduced

[Google, US patent 9395993 B2, July 2016]

[Koeberl et al., TrustLite: A security architecture for tiny embedded devices,

European Conference on Computer Systems. ACM, 2014]

Spot the defect!

59

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret (int pin_guess) {

if (tries_left > 0) &&

(PIN == pin_guess) {

tries_left = 3; return secret; }

else {

tries_left--; return 0 ;}

}

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c

Repeated calls will cause

integer underflow of tries_left,

given attacker infinite number

of tries

Moral of the story (this bug):

• You can still screw things up

• You have to be very careful

writing security-sensitive

enclave code

But:

• Screwing up anywhere else in

the program can not leak the PIN

1. I/O attacker

2. Malicious code attacker
inside the application

• Java sandbox &

SGX protect against this

3. Platform level attacker
inside the platform,

‘under’ the application

• SGX also protects against this

In all cases, the application itself still has to ensure it exposes only the right

functionality, correctly & securely (eg. with all input validation in place)

Different attacker models for software

60

application

OS

malicious input

application

observable output

application

malicious

component

Recap

• Conventional OS acccess control

• Language-level sandboxing in safe languages

• eg Java sandboxing using stackwalking

• Java VM & OS in the TCB

• Hardware-supported enclaves in unsafe languages

• eg Intel SGX enclaves

• underlying OS possibly not in the TCB

61

access control

within an

application

access control

of applications and

between applications

Recap

• Language-based sandboxing is a way to do access control within a

application: different access right for different parts of code

– This reduces the TCB for some functionality

– This may allows us to limit code review to small part of the code

– This allows us to run code from many sources on the same VM and

don’t trust all of them equally

• Hardware-based sandboxing can also achieve this also for unsafe

programming languages

– Much smaller TCB: OS and VM are no longer in the TCB

– But less expressive & less flexible

• No stackwalking or rich set of permissions

62

