Fuzzing Experiences

Erik Poli
Digital Security
Radboud University Nijmegen

Radboud Universiteit Nijmegen 5%} TR “ / e i\'.A;bS(E.(rerslgcurity

%
Omy



Dumb mutational fuzzers: Radamsa & zzuf

« Radamsa typically better than zzuf
« Tweaking parameters of zzuf for optimal results can be tricky

« Bottleneck: malformed inputs may be rejected straight away, and not get
very deep into the code.

 E.g. due toincorrect initial bytes or broken CRC check (e.g. in PNG)

 NB many inputs does not always mean thorough testing, with good
coverage

 Programs rejecting such malformed files (without or ideally with some
error message) is not a bug, and certainly not a security bug

Solutions:
* Not mutation of initial n bytes of a file
« Remove correctness checks from code

* Note that you should start these fuzzers with a legal input



AFL

Overall much better than dumb fuzzers

— When comparing raw numbers of problems found by AFL and say zzuf
beware that latter will contain many duplicates

Typically Asan needed to get interesting warnings,
but in a few cases just AFL on its own could produce e.g. seg-faults

Bottleneck with malformed inputs being rejected straightaway may still
exist

— AFL will figure out that some initial header should left unchanged,
but it will not figure out that file should have correct CRC checksum

— ALF does have dictionary option to guide generation of mutations by
means of a grammar



Input sizes

« Large input files are not the best approach

— execution will be slower

— random mutation unlikely to hit interesting places;
test mutations may simply try ‘more of the same’



Some interesting results
« Group 15
— ImageMagick with JNG & RLE formats

— difference 6.7.7 and 7.0.9 versions

« Group 16

— Radamsa on ed with txt format

« Group 25

— Polybar with INI file format

— memory flaws (illegal writes & reading uninitialized memory)
found with ASan & MSan



