
Software Security

Introduction

Erik Poll
Digital Security

Radboud University Nijmegen

Admin

• NB IMC051 (5EC, for TRU/e) vs ISOFSE (6EC)

• All course material will be on

http://www.cs.ru.nl/~erikpoll/ss

• Register in Osiris (and hence Brightspace)

– If you cannot, send me an email to get on
my back-up mailing list !

• For TRU/e students: get on the TRU/e mailing list !

https://true-security.nl/admission/

Upcoming events

• Friday Sept 20 : Master BBQ

• Tuesday Sept 24: discussion with Dick Schoof of AIVD

• Monday Oct 7, 17:00: Thalia PokéCTF

https://thalia.nu/events/495/

Goals of this course

• Understanding the role that software plays

– in providing security

– as source of insecurity

• Principles, methods & technologies to make software

more secure

– incl. practical experience with some of these

• Typical threats & vulnerabilities that make software less

secure

and how to avoid them

4

Practicalities: prerequisites

• Introductory security course

• TCB (Trusted Computing Base),

CIA (Confidentiality, Integrity, Availability),

Authentication ...

• Basic programming skills, in particular

– C(++) or assembly/machine code

– eg. malloc(), free(), *(p++), &x

strings in C using char*

– Java or some other typed OO language

– eg. public, final, private, protected,

Exceptions

– bits of PHP and JavaScript

5

Sample C(++) code you will see next week

char* copying_a_string(char* string) {

char* b = malloc(strlen(string));

strcpy(b,a);

return(b);

}

int using_pointer_arithmetic(int pin[]) {

int sum = 0;

int *pointer = pin;

for (int i=0; i<4; i++){

sum = sum + *pointer;

pointer++;

}

return sum;

}

6

Sample Java code you will see next month

public int sumOfArray(int[] pin)

throws NullPointerException,

ArrayIndexOutOfBoundsException {

int sum = 0;

for (int i=0; i<4; i++){

sum = sum + a[i];

}

return sum;

}

7

Sample Java OO code you will see next month

final class A implements Serializable {

public final static SOME_CONSTANT 2;

private B b1, b2;

protected A ShallowClone(Object o)

throws ClassCastException {

x = new(A);

x.b1 = ((A) o).b1;

x.b2 = ((A) o).b2;

return x;

}

}

8

implements java.io.Serializable

Literature & other resources

• Slides + reading material available at

http:///www.cs.ru.nl/~erikpoll/ss

• Mandatory reading:

articles, 2 book chapters and lecture notes

– see links on webpage

– I’ll be updating this as we go along

• Some additional optional suggestions for background reading,

incl. books and web-sites

• Recommended: the Risky.Biz podcast

to keep up with weekly security news

9

Practicalities: form & examination

• 2-hrs lecture every week

– read associated papers & ask questions!

• project work

– PREfast for C++ (individual)

– JML program verification for Java (individual, 6EC

version only)

– group projects (with 4 people) on fuzzing

– group project on web-application code analysers

• written exam

• 50% of grade, but you must do the projects,

and you must pass the exam

10

Today

• Organisational stuff

• What is "software security"?

• The problem of software insecurity

• The causes of the problem

• The solution to the problem

• Security concepts

11

Motivation

Quiz

Why can websites, servers, browsers, laptops,
smartphones, wifi access points, network routers, mobile
phones, cars, pacemakers, uranium enrichment facilities,
... be hacked?

Because they contain

When it comes to cyber security

software is not our Achilles heel

but our Achilles body

‘Achilles only had an Achilles heel, I have an entire Achilles body’

- Woody Allen

13

Why a course on software security?

• Software plays a major role in providing security, and is

the major source of security problems.

– Software is the weakest link in the security chain, with

the possible exception of “the human factor”

• Software security does not get much attention

– in other security courses, or

– in programming courses,

or indeed, in much of the security literature!

14

How do computer systems get hacked?

By attacking

• software

• humans

• the interaction between software & humans

• crypto

• hardware

• …

E

r

i

k

P

o

l

l

15

16

We focus on software security, but don’t forget

that security is about, in no particular order,

people (users, employees, sys-admins, programmers,...),

access control, passwords, biometrics, protocols,

policies & their enforcement, monitoring, auditing,

legislation, cryptogaphy, persecution, liability, risk

management, incompetence, confusion, lethargy,

stupidity, mistakes, complexity, software, bugs,

verification, hackers, viruses, hardware, operating

systems, networks, databases, public relations, public

perception, conventions, standards, physical protection,

data protection, ...

Fairy tales

Many discussions of security begin with Alice and Bob

How can Alice communicate securely with Bob,

when Eve can modify or eavesdrop on the communication?

17

Alice Bob

Eve

18

This is an interesting

problem,

but it is not the biggest

problem

Hard reality & the bigger problem

Alice’s computer is communicating with another computer

How can we prevent Alice’s computer from being hacked,

when it communicates with some other computer?

Or detect this? And then react ?

Solving the 1st problem - securing the communication - does not help!

19sws1

Alice’s

computer

possibly malicious

input

The problem

Slammer Worm (Jan 2002)

21

From The Spread of the Sapphire/Slammer Worm, by David Moore et al.

Slammer Worm (Jan 2002)

22

From The Spread of the Sapphire/Slammer Worm, by David Moore et al.

Security problems nowadays

To get an impression of the problem, have a look at

US-CERT bulletins

http://www.us-cert.gov/ncas

CVE (Common Vulnerability Enumeration)

https://cve.mitre.org/cve/

NIST’s vulnerability database

https://nvd.nist.gov/vuln/search

Or subscribe to CVE twitter feed

https://twitter.com/cvenew

23

Changing nature of attackers

Traditionally, hackers are amateurs motivated by fun

• publishing attacks for the prestige

Increasingly, hackers are professional

• attackers go underground

• zero-day exploits are worth money

• attackers include

• organized crime
with lots of money and (hired) expertise

Ransomware is an important game changer,
as it allows attackers to monetise nearly anything.

• state actors:
with even more money & in-house expertise

24

Current prices for 0days

Current prices for 0days

Software (in)security: crucial facts

• There are no silver bullets!

Crypto or special security features do not magically solve

all problems

– software security ≠ security software

– “if you think your problem can be solved by cryptography,

you do not understand cryptography and you do not

understand your problem” [Bruce Schneier]

• Security is emergent property of entire system

– just like quality

• (Non-functional) security aspects should be

integral part of the design, right from the start

The causes of the problem

Quick audience poll

• How many of you learned to program in C or C++?

• ~ as a first programming language?

• How many of these courses

• warned you about buffer overflows?

• explained how to avoid them?

Major causes of problems are

• lack of awareness

• lack of knowledge

• irresponsible teaching of dangerous programming

languages

29

Quick audience poll

• How many of you have built a web-application?

– in which programming languages?

• What is the secure way of doing a SQL query in this
language? (to avoid SQL injection)

Major causes of problems are

• lack of awareness

• lack of knowledge

30

1. Security is always a secondary concern

• Security is always a secondary concern

– primary goal of software is to provide functionality &

services;

– managing associated risks is a derived/secondary

concern

• There is often a trade-off/conflict between

– security

– functionality & convenience

where security typically looses out

31

Functionality vs security

• Functionality is about what software should do,

security is (also) about what it should not do

Unless you think like an attacker,
you will be unaware of any potential threats

32

Functionality vs security: Lost battles?

• operating systems (OSs)

– with huge OS, with huge attack surface

• programming languages

– with easy to use, efficient, but very insecure and error-

prone mechanisms

• web browsers

– with JavaScript, plug-ins for Flash & Java, access to

microphone, web cam, location, …

• email clients

– which automatically cope with all sorts of formats &

attachments

33

Functionality vs security : PHP

"After writing PHP forum software for three years now,

I've come to the conclusion that it is basically impossible

for normal programmers to write secure PHP code.

It takes far too much effort. PHP's raison d'etre is that it

is simple to pick up and make it do something useful.

There needs to be a major push ... to make it safe for the

likely level of programmers - newbies.

Newbies have zero chance of writing secure software

unless their language is safe. ... "

[Source http://www.greebo.cnet/?p=320]

34

2. Weakness in depth

input languages, for

interpretable or executable input, eg

pathnames, XML, JSON, jpeg, mpeg, xls, pdf...

programming languages

35

hardware (incl network card & peripherals)

application

operating system

webbrowser
with plugins platform

eg Java or .NET

system APIs

middleware

libraries SQL

data

base

MALICIOUS

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

2. Weakness in depth

Software

• runs on a huge, complicated infrastructure

– HW, OS, platforms, web browser, lots of libraries & APIs, ...

• is built using complicated languages

– programming languages

and input languages (SQL, HTML, XML, mp4, …)

• using various tools

– compilers, IDEs, pre-processors, dynamic code downloads

All of these may have security holes, or may make the

introduction of security holes very easy & likely

36

Recap

Problems are due to

• lack of awareness

– of threats, but also of what should be protected

• lack of knowledge

– of potential security problems, but also of solutions

• people choosing functionality over security

• compounded by complexity

– software written in complicated languages, using large APIs ,

and running on huge infrastructure

37

Types of software security problems

Flaws vs vulnerabilities

Terminology can be very confused & confusing:

security weakness, flaw, vulnerability, bug, error, coding defect..

Important distinction:

1. security weaknesses / flaws:

things that are wrong or could be better

2. security vulnerabilities

flaws that can actually be exploited by an attacker

This requires flaw to be

- accessible: attacker has to be able to get at it

- exploitable: attacker has to be able to do some damage with it

Eg by turning off Wifi and BlueTooth network connection,

many security vulnerabilities become flaws

39

Typical software security flaws

40

Security bugs found in Microsoft's first bug fix month (2002)

37%

20%

26%

17%
0%

buffer overflow

input validation

code defect

design defect

crypto

Design vs implementations flaws

Another useful distinction:

1. design flaws

vulnerability in the design

2. bugs aka implementation flaws aka code-level defects

vulnerability in the software introduced during coding

Overall consensus:

coding bugs and design flaws roughly equally common

Vulnerabilities also arise on other levels

• configuration flaws when installing software on a machine

• unforeseen consequence of the intended functionality (eg spam)

41

Coding flaws

For flaws introduced during coding, we can distinguish

2a. flaws that can be understood looking at the program itself

eg. simple typos, confusing two program variables, off-by-one

error in array access, errors in the program logic,...

2b. (common) problems in the interaction with the

underlying platform or other systems and services, eg

– buffer overflows in C(++) code

– SQL injection, XSS, CSRF,.... in web-applications

– Deserialisation attacks in many programming languages

– ...

42

Bug vs features

Another useful distinction: security flaws can be

1. bugs

2. features

• unintended access to features

• interaction / combination of features

43

The dismal state of software security

The bad news

people keep making the same mistakes

The good news

people keep making the same mistakes

…… so we can do something about it!

“Every upside has its downside” [Johan Cruijff]

44

Spot the (security) flaws!

int balance;

void decrease(int amount)

{ if (balance <= amount)

{ balance = balance – amount; }

else { printf(“Insufficient funds\n”); }

}

void increase(int amount)

{ balance = balance + amount;

}

45

<= should be >=

what if this sum is
too large for an int?

what if amount

is negative?

Different kinds of implementation flaws

1. lack of input validation of (untrusted)

user input

– could be a design flaw rather than an

implementation flaw?

– more “fundamental” than flaws below

2. logic error

3. problem in interaction with

underlying platform

– “lower level” than the flaws above

46

<= should be >=

what if amount

is negative?

what if sum is too
large for a 64 bit int?

Security in the

Software Development Life Cycle

(SDLC)

[Material cover in chapter on Secure Software Lifecycle

by Williams, see course web page]

How to improve software insecurity?

• We know how to do this!

• Knowledge about standard mistakes is crucial in

preventing them

– These depends on the programming language, the

“platform” (OS, database systems, web-application

framework,…), and the type of application

– There is lots of info available on this now

• But this is not enough: security to be taken into account

from the start, throughout the software development life

cycle

– several ideas & methodologies to do this

48

Security in Software Development Lifecycle

49

Requirements

and use cases

Design Coding Testing

Security

Requirements

Threat

Modelling

Abuse

Cases

Risk
Analysis

Security

tests
Static

Analysis

Pen

testing

Security
incidents

Deployment

Training

Software Development Life Cycle

Evolution of Security Measures

Security-by-Design

Privacy-by -Design

Patch

Management

Coding

guidelines

Evolution in tackling software security

Organisations always begin tackling security at the end of

the SDLC, and then slowly evolve to tackle it earlier

For example

1. first, do nothing

– some problems may happen & then you patch

2. then, implement support for regular patching

3. then, pre-emptively have products pen-tested

– eg. hire pen-testers, set up bug bounty program, ...

4. then, use static analysis tools when coding

5. then, train your programmers to know about common problems

6. then, think of abuse cases, and develop security tests for them

7. then, start thinking about security before you even start

development

Security in the Software Development Life Cycle

51

[Source: Gary McGraw, Software security, Security & Privacy Magazine,

IEEE, Vol 2, No. 2, pp. 80-83, 2004.]

McGraw’s Touchpoints

Security in the Software Development Life Cycle

52

McGraw’s Touchpoints

[book: Software Security: building security in, Gary McGraw, 2006]

Methodologies for security in SDLC

Common/best practices, with methods for assessments and

roadmaps for improvement

• McGraw’s Touchpoints

BSIMM Building Security In – Maturity Model

http://bsimm.com

• Microsoft SDL

• OpenSAMM Software Assurance Maturity Model

http://opensamm.org

53

OpenSAMM’s 4 business functions

and 12 security practices

54

Microsoft’s SDL Optimisation Model

BSIMM (Building Security In Maturity Model)

Based on data collected from large enterprises

See https://www.bsimm.com/framework/

56

To read on security in the SDLC

CyBok chapter on Secure Software Lifecycle

by Laurie Williams, 2019

57

Fundamental security concepts

NB I assume you know all this stuff;

if you don’t, read up on it!

• “Is this system secure?”

• “This system is secure”

Why are this question and this claim meaningless?

You have to say

• what it means for the system to be secure:

the security requirements

• against which attackers it has to be secure:

the attacker model

Attacker/Threat Modelling

Any discussion of security must start with inventory of

1. The stakeholders & their assets, esp. the crown jewels

1. The attacker model aka threat modelling

• What is the attack surface?

• What are the attack vectors the attacker can use?

• What are the capabilities & resources of the attacker?

script kiddies, criminals, insiders, APTs, … ?

• Possibly also: What are the motives of the attacker?

• For detailed analysis for whole IT infrastructure of an

organisation you can use MITRE’s ATT&CK framework

Any discussion of security without understanding these

issues is meaningless
60

Security objectives

• Confidentiality unauthorised users cannot read information

• Integrity unauthorised users cannot alter information

• Authentication knowing who/what you are interacting with

• Availability authorised users can access information

In Dutch: BIV = Beschikbaarheid, Integriteit, Vertrouwelijkheid

• Non-repudiation for accountability

users cannot deny actions

• Privacy

• Anonimity

• …

61

Integrity vs Confidentiality

Integrity typically way more important than confidentiality

Eg think of

– your bank account information

– your medical records

– all the software you use, incl. the entire OS

62

Threats vs security requirements

Sometimes it is easier to think in terms of threats than in
terms of security requirements, eg

• information disclosure

– confidentiality

• tampering with information

– integrity

• denial-of-service (DoS)

– availability

• spoofing

– authentication

• unauthorised access, elevation of privilege attacks

– access control

63

Trusted Computing Base (TCB)

TCB is the collection of software and hardware

that we have to trust for our security

If any part of the TCB is compromised, we’re screwed.

The attacker model and the TCB are complementary.

• We want the TCB to be as small as possible

– Unfortunately, typically the TCB is huge, as it include the

operating system, lots of third-party libraries downloaded

over the internet, the compiler, the IDE, ...

• Trust is bad; we want to minimize trust

– being trusted ≠ being trustworthy

• The TCB for different security properties can be different

– eg. making backups makes the TCB for confidentiality larger,

but the TCB for availability smaller

How to realise security objectives? AAAA

• Authentication

– who are you?

• Access control/Authorisation

– control who is allowed to do what

• Auditing

– check if anything went wrong

• Action

– if so, take action

65

How to realise security objectives?

Other names for the last three A's

• Prevention

• Detection

• Reaction

– to recover assets, repair damage, …

– to persecute (and hence deter) offenders

66

prevention vs detection & reaction

• We naturally think as prevention as way to ensure security,

but detection & response are foten much more important

and effective

– Eg. breaking into a house with large windows is trivial;

despite this absence of prevention, detection & reaction still

provides security against burglars

– Most effective security requirement for most persons and

organisations: make good back-ups, so that you can recover

after an attack

• NB don't ever be tempted into thinking that good
prevention makes detection & reaction superfluous.

• Hence important security requirements include

– being able to do monitoring

– having logs for auditing and forensics

– having someone actually inspecting the logs

– ...

67

To read & do for coming week

• CyBok chapter on Secure Software Lifecycle

by Laurie Williams, 2019

• Check out recent CVEs: see links on course page

• Brush up on your C knowledge

68

