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Overview (next 2 weeks)

1. How do memory corruption flaws work?

2. What can be the impact?

3. How can we spot such problems in C(++) code?

Next weeks: tool-support for this

• static analysis aka SAST:  PREfast indvidual project

• testing aka DAST: Fuzzing group project

4. What can ‘the platform’ do about it?

ie. the compiler, system libraries, hardware, OS, ..

5. What can the programmer do about it?
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Reading material

• SoK article: ‘Eternal War in Memory’  S&P 2013

– Excl. Section VII. 

– This article is quite dense. You are not expected to be able to 

reproduce or remember all the discussion here.  It’s good 

enough if you can follow the article, with a steady supply of 

coffee while googling if the terminology is not clear.

• Chapter 3.1 & 3.2  in  lecture notes on memory-safety

We’ll revisit safe programming languages – incl. other safety 

features – and  rest of Chapter 3 in later lecture
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Essence of the problem

Suppose in a C program you have an array of length 4

char buffer[4];

What happens if the statement below is executed?

buffer[4] = 'a'; 

This is defined to be 

ANYTHING can happen
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undefined behaviour: anything can happen
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undefined behaviour: anything can happen



undefined behaviour: anything can happen

Suppose in a C program you have an array of length 4

char buffer[4];

What happens if the statement below is executed?

buffer[4] = 'a';    

If the attacker can control the value 'a‘                              

then  anything that the attacker wants may happen

• If you are lucky, you only get a SEGMENTATION FAULT

– and you’ll know  that something went wrong

• If you are unlucky,  there is remote code  execution (RCE) 

– and you won’t know   
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undefined behaviour: anything can happen

Suppose in a C program you have an array of length 4

char buffer[4];

What happens if the statement below is executed?

buffer[4] = 'a'; 

A compiler could remove the statement above,                          

ie. do nothing

• This would be correct compilation by the C standard
because anything includes nothing

• This may be unexpected, but compilers actually do this (as part 

of optimalisations) and this has caused security problems; 

examples later & in the lecture notes  
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Solution to this problem

• Check array bounds at runtime

– Algol 60 proposed this back in 1960!

• Unfortunately, C and C++ have not adopted this solution.

• Why?

• For efficiency
Regrettably, people often choose performance over

security

• As a result, buffer overflows have been the no 1 security 

problem in software ever since.

• Fortunately, Perl, Python, Java, C#, PHP, Javascript, and 

Visual Basic do check array bounds
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Tony Hoare on design principles of ALGOL 60

In his Turing Award lecture in 1980

“The first principle was security : ... every subscript was checked 

at run time against both the upper and the lower declared 

bounds of the array. Many years later we asked our customers 

whether they wished an option to switch off these checks in the 

interests of efficiency. Unanimously, they urged us not to - they 

knew how frequently subscript errors occur on production runs 

where failure to detect them could be disastrous.

I note with fear and horror that even in 1980, language designers 

and users have not learned this lesson. In any respectable 

branch of engineering, failure to observe such elementary 

precautions would have long been against the law.”

[C.A.R. Hoare, The Emperor’s Old Clothes, Communications of the ACM, 1980]
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Buffer overflow

• The most common security problem in (machine code 

compiled from) C and C++

• ever since the first Morris Worm in 1988

• Check out CVEs mentioning buffer (or buffer%20overflow) 

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer

• Ongoing arms race of attacks & defences: attacks are 

getting cleverer, defeating ever better countermeasures
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Other memory corruption problems  

Errors with pointers and with dynamic memory (the heap)

• Who here has ever written a C(++) program that uses pointers? 

• Who ever had such a program crashing?

• Who has ever written a C(++) program that uses dynamic 
memory, ie.  malloc & free?

• Who ever had such a program crashing?

In C/C++, the programmer is responsible for memory 

management, and this is very error-prone

– Technical term: C and C++ do not offer memory-safety  

(see lecture notes on language-based security, §3.1-3.2)
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Memory corruption problems

Typical causes  

• access outside array bounds

• buggy pointer arithmetic

• dereferencing null pointer

• using a dangling pointer or stale pointer, caused by 

• use-after-free

• double-free

• forgetting to check for failures in allocation 

• forgetting to de-allocate, causing a memory leak 

• not really a memory corruption issue, but rather a memory 

DoS issue
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Spot all (potential) defects

1000 …

1001 void f (){ 

1002 char* buf, buf1;

1003 buf = malloc(100); 

1004 buf[0] = ’a’;

...

2001 free(buf1);

2002 buf[0] = ’b’;

...

3001 free(buf);

3002 buf[0] = ’c’;

3003 buf1 = malloc(100);

3004 buf[0] = ’d’

3005 }  
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potential use-after-free

if  buf  & buf1 are aliased

possible null dereference 

(if  malloc failed)

use-after-free; buf[0] points 

to de-allocated memory

use-after-free, but now buf[0] 

might point to memory that 

has now been re-allocated 

memory leak; pointer buf1

to this memory is lost & 

memory is never freed



How does classic buffer overflow work?

aka smashing the stack
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Process memory layout
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Arguments/ Environment

Stack

Unused Memory

Heap (dynamic data)

Static Data 

Program Code .text
Low 

addresses

High 

addresses
Stack grows

down, 

by procedure 

calls

Heap grows

up, 

eg. by malloc 

and new.data



Stack layout

The stack consists of Activation Records:
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AR main()

AR f()

Stack grows

downwards

void f(int x) {

char[8] buf;

gets(buf);

}

void main() { 

f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows

upwards



Stack overflow attack - case 1  

What if  gets() reads more than 8 bytes ?

Attacker can jump to abitrary point in the code!
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AR main()

AR f()

void f(int x) {

char[8] buf;

gets(buf);

}

void main() { 

f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]



Stack overflow attack - case 2

What if  gets() reads more than 8 bytes ?

Attacker can jump to his own code (aka shell code)
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AR main()

AR f()

void f(int x) {

char[8] buf;

gets(buf);

}

void main() { 

f(…); …
}

void format_hard_disk(){…}

x

return address

/bin/sh 

exec 



Stack overflow attack - case 2

What if  gets() reads more than 8 bytes ?

Attacker can jump to his own code (aka shell code)
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AR main()

AR f()

void f(int x) {

char[8] buf;

gets(buf);

}

void main() { 

f(…); …
}

void format_hard_disk(){…}

x

return address

/bin/sh 

exec 

never use gets!

gets has been removed from

the C standard in 2011



Code injection vs code reuse

The two attack scenarios in these examples

(2) is a code injection attack                                                                

attacker inserts his own shell code in a buffer and corrupts 

return addresss to point to this code                         

In the example, exec('/bin/sh')

This is the classic buffer overflow attack                                                   

[Smashing the stack for fun and profit, Aleph One, 1996]

(1) is a code reuse attack                                                                               

attacker corrupts return address to point to existing code                             

In the example, format_hard_disk

Lots of details to get right!  

• knowing precise location of return address and other data on 

stack, knowing address of code to jump to, .... 
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What  to attack? More fun on the stack

Suppose the attacker can overflow username

In addition to  corrupting the return address,  this might corrupt

• pointers, eg filename 

• other data on the stack, eg is_super_user,diskquota

• function pointers, eg error_handler

But not j, unless the compiler chooses to allocate variables in a 

different order, which the compiler is free to do.

void f(void(*error_handler)(int),...) {

int  diskquota = 200; 

bool is_super_user = false;

char* filename = "/tmp/scratchpad";

char[8] username;

int j = 12; 

...

}
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What  to attack? Fun on the heap

struct BankAccount {

int  number; 

char username[20];

int  balance;

}

Suppose attacker can overflow username

This can corrupt other fields in the struct.

Which field(s) can be corrupted depends on the order of  the fields 
in memory, which the compiler is free to choose.
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Spotting the problem



str

h e l l o \0

Reminder: C chars & strings

• A char in C is always exactly one byte

• A string is a sequence of chars terminated by a NULL byte

• String variables are pointers of type char* 

char* str = "hello";   // a string str

strlen(str) = 5  
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Example: gets

char buf[20];

gets(buf); // read user input until 

// first EoL or EoF character

• Never use gets

• gets has been removed from the C library

• Use fgets(buf, size, file) instead
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Example: strcpy

char dest[20];

strcpy(dest, src); // copies string src to dest

• strcpy assumes dest is long enough ,

and assumes src is null-terminated 

• Use strncpy(dest, src, size) instead

Beware of difference between  sizeof and  strlen

sizeof(dest) = 20      // size of an array

strlen(dest) = number of chars up to first null byte

// length of a string
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Spot the defect!  

char buf[20];

char prefix[] = "http://";

char* path;

...

strcpy(buf, prefix); 

// copies the string prefix to buf

strncat(buf, path, sizeof(buf)); 

// concatenates path to the string buf
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Spot the defect! (1)

char buf[20];

char prefix[] = "http://";

char* path;

...

strcpy(buf, prefix); 

// copies the string prefix to buf

strncat(buf, path, sizeof(buf)); 

// concatenates path to the string buf

29

strncat’s 3rd parameter is number 

of  chars to copy, not the buffer size

So this should be sizeof(buf)-7



Spot the defect! (2)

char src[9];

char dest[9];

char* base_url = "www.ru.nl";

strncpy(src, base_url, 9); 

// copies base_url to src

strcpy(dest, src);

// copies src to dest
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char src[9];

char dest[9];

char* base_url = "www.ru.nl";

strncpy(src, base_url, 9); 

// copies base_url to src

strcpy(dest, src);

// copies src to dest

Spot the defect! (2)

31

base_url is 10 chars long, incl. 

its null terminator, so src will not 

be null-terminated



Spot the defect! (2) 

char src[9];

char dest[9];

char* base_url = ”www.ru.nl”;

strncpy(src, base_url, 9); 

// copies base_url to src

strcpy(dest, src);

// copies src to dest
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so strcpy will overrun the buffer dest

base_url is 10 chars long, incl. 

its null terminator, so src will not 

be null-terminated



Example: strcpy and strncpy

Don’t replace

strcpy(dest, src)

with  

strncpy(dest, src, sizeof(dest))

but with

strncpy(dest, src, sizeof(dest)-1)

dst[sizeof(dest)-1] = '\0';

if dest should be null-terminated!

NB: a strongly typed programming language would 

guarantee that strings are always null-terminated,                    

without the programmer having to worry about this...
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Spot the defect!  (3)

char *buf;

int  len;

...

buf = malloc(MAX(len,1024)); // allocate buffer   

read(fd,buf,len);  // read len bytes into buf
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Spot the defect!  (3)

char *buf;

int  len;

...

buf = malloc(MAX(len,1024)); // allocate buffer 

read(fd,buf,len);  // read len bytes into buf

35

What happens if  len is negative?

The length parameter of  read system call is unsigned!

So negative len is interpreted as a big positive one!

(At the exam, you’re not expected to remember that read treats its 

3rd argument as an unsigned int)



Spot the defect!  (3)

char *buf;

int  len;

...

if (len < 0)

{error ("negative length"); return; }

buf = malloc(MAX(len,1024));

read(fd,buf,len);

A remaining problem may be that buf is not null-terminated; 

we ignore this for now.

36



Spot the defect!  (3)

char *buf;

int  len;

...

if (len < 0)

{error ("negative length"); return; }

buf = malloc(MAX(len,1024));

read(fd,buf,len);

37

What if  the malloc() fails?

(because we are out of  memory)



Spot the defect!  (3)

char *buf;

int  len;

...

if (len < 0)

{error ("negative length"); return; }

buf = malloc(MAX(len,1024));

if (buf==NULL) { exit(-1);} 

// or something a bit more graceful 

read(fd,buf,len);
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Better still

char *buf;

int  len;

...

if (len < 0)

{error ("negative length"); return; }

buf = calloc(MAX(len,1024)); 

//to initialise allocate memory to 0

if (buf==NULL) { exit(-1);} 

// or something a bit more graceful 

read(fd,buf,len);
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Spot the defect!  

#define MAX_BUF 256

void BadCode (char* in)

{   short len;

char buf[MAX_BUF];

len = strlen(in);

if (len < MAX_BUF) strcpy(buf,in);

}
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Spot the defect! 

#define MAX_BUF 256

void BadCode (char* in)

{   short len;

char buf[MAX_BUF];

len = strlen(in);

if (len < MAX_BUF) strcpy(buf,in);

}

The integer overflow is the root problem,                               

the (heap) buffer overflow it causes makes it exploitable

See https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=integer+overflow
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What if  in is longer than 32K ?

len may be a negative number, 

due to integer overflow

hence: potential

buffer overflow



Spot the defect!  

bool CopyStructs(InputFile* f, long count)

{   structs = new Structs[count];

for (long i = 0; i < count; i++)

{ if !(ReadFromFile(f,&structs[i])))

break;

}

}

And this integer overflow can lead to a (heap) buffer overflow

Since 2005 Visual Studio C++ compiler adds check to prevent this
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effectively does a 
malloc(count*sizeof(type))

which may cause integer overflow



NB absence of language-level security

In a safer programming language than C/C++,                           

the programmer would not have to worry about

• writing past array bounds

(because you'd get an IndexOutOfBoundsException instead)

• implicit conversions from signed to unsigned integers 
(because the type system/compiler would forbid this or warn)

• malloc possibly returning null
(because you'd get an OutOfMemoryException instead)

• malloc not initialising memory                                                                             
(because language could always ensure default initialisation)

• integer overflow                                                                                        
(because you'd get an IntegerOverflowException instead)

• ...
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Spot the defect!  

1. void* f(int start)

2. if (start+100 < start) return SOME_ERROR; 

3. // checks for overflow  

4. for (int i=start; i < start+100; i++) {

5. . . . // i will not overflow

6. }     }

Integer overflow is undefined behaviour! This means

• You cannot assume that overflow produces a negative number;       
so line 2 is not a good check for integer overflow.

• Worse still, if integer overflow occurs, behaviour is undefined, and
ANY compilation is ok 

• So compiled code can do anything if start+100 overflows

• So compiled code can do nothing if start+100 overflows

• This means the compiler may remove line 2

Modern C compilers are clever enough to know x+100 < x is 
always false, and optimise code accordingly
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Spot the defect!     

1. unsigned int tun_chr_poll(  struct file *file,  

2.                              poll_table *wait)

3. { ...

4.  struct sock *sk = tun->sk; // take sk field of tun

5.  if (!tun) return POLLERR; // return if tun is NULL

6.  ... 

7.  }

If tun is a null pointer, then tun->sk is undefined
What this code does if tun is null is undefined:                                           

ANYTHING may happen then.

So compiler can remove line 5, as the behaviour when tun is NULL 

is undefined anyway, so this check is 'redundant'.

Standard compilers (gcc, CLang) do this 'optimalisation' !

This is actually code from the Linux kernel, and removing line 5 led 

to a security vulnerability [CVE-2009-1897]
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Spot the defect! 

// TCHAR is 1 byte ASCII or multiple byte UNICODE 

#ifdef UNICODE

#  define TCHAR wchar_t

#  define _sntprintf _snwprintf  

#else

#  define TCHAR char

#  define _sntprintf _snprintf

#endif

TCHAR buf[MAX_SIZE];

_sntprintf(buf, sizeof(buf), input);

The CodeRed worm exploited such an mismatch. 

Lots of code written under the assumption that characters are         
one byte contained overflows after switch from ASCII  to Unicode
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sizeof(buf) is the size in bytes,                   

but this parameter gives the number 

of  characters that will be copied

[slide from presentation by Jon Pincus]



Spot the defect!  

#include <stdio.h>

int main(int argc, char* argv[]) 

{  if (argc > 1) 

printf(argv[1]);

return 0;

}

This program is vulnerable to format string attacks, where 
calling the program with strings containing special 
characters can result in a buffer overflow attack.

47



Format string attacks 

New type of memory corruption discovered in 2000

• Strings can contain special characters,  eg %s in

printf("Cannot find file %s", filename);

Such strings are called format strings

• What happens if we execute the code below?

printf("Cannot find file %s"); 

• What can happen if we execute

printf(string) 

where string is  user-supplied ? 

Esp. if it contains special characters, eg %s, %x, %n, %hn?
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Format string attacks

Suppose attacker can feed malicious input string s to
printf(s). This can

• read the stack   

%x reads and prints bytes from stack, so input 

%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x

%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x

%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x...

dumps the stack ,including passwords, keys,… stored on 
the stack

• corrupt the stack

%n writes the number of characters printed to the stack,
so input    12345678%n   writes value 8 to the stack

• read arbitrary memory 

a carefully crafted format string of the form

\xEF\xCD\xCD\xAB %x%x...%x%s

print string at memory address ABCDCDEF 
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Preventing format string attacks

• Always  replace     printf(str)

with printf("%s", str)

• Compiler or static analysis tool could warn if the number of 
arguments does not match the format string, eg in

printf ("x is %i and y is %i", x);

Eg gcc has (far too many?) command line options for this:                    
-Wformat –Wformat-no-literal –Wformat-security ...

If the format string is not a compile-time constant, we cannot
decide this at compile time, so compiler has to give false
positives or false negatives

See https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=format+string

to see how common format strings still are
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Recap: buffer overflows

• Buffer overflow is #1 weakness in C and C++ programs

– because these language are not memory-safe

• Tricky to spot

• Typical cause: programming with arrays, pointers, and 

strings 

– esp. library functions for null-terminated strings

• Related attacks

• Format string attack: another way of corrupting stack

• Integer overflows: often a stepping stone to getting a 

buffer to overflows

• but just the integer overflow can already have a 

security impact; eg think of banking software
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Platform-level defences



Platform-level defences

• Defenses the compiler, hardware, OS,… can take, 

without the programmer having to know

• Some defenses may need OS & hardware support

• Some defenses cause overhead

– if the overhead is unacceptable in production code, we can 

still use it when testing 

• Some defenses may break binary compatibility

– eg if a compiler adds extra book-keeping & checks, then all 

libraries may need to be re-compiled with that compiler
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Platform-level defenses

1. Stack canaries

2. Non-executable memory (NX,  WX)

3. Address space layout randomization (ASLR)

More advanced defenses

1. More randomisation: eg. pointer & memory encryption

2. More memory safety checks: 

eg. checks on bounds (spatial) or on allocation  (temporal) 

3. Checks on control flow 

4. Execution-aware memory protection 

History shows that all new defenses are eventually defeated...
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now standard 

on many 

platforms



1. Stack canaries

• A dummy value - stack canary or cookie - is written on the stack 

in front of the return address and checked when function returns

• A careless stack overflow will overwrite the canary, which can 

then be detected

• first introduced in as StackGuard in gcc

• only very small runtime overhead
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Stack canaries

Stack without  canary                             Stack with canary
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x

return address

buf[4..7]

buf[0..3]

x

return address

buf[4..7]

buf[0..3]

canary value



Further improvements

• More variation in canary values: eg not a fixed values hardcoded 

in binary but a random values chosen for each execution  

• Better still, XOR the return address into the canary value

• Include a null byte in the canary value,  because C string 

functions cannot write nulls inside strings

A careful attacker can still defeat canaries, by

• overwriting the canary with the correct value

• corrupting a pointer to point to the return address to then change 

the return address without killing the canary

eg changing                                     to 
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return

buf[4..7]

buf[0..3]

canary value
char* ptr

return

buf[4..7]

buf[0..3]

canary value
char* ptr



Further improvements

• Re-order elements on the stack to reduce the potential impact of 

overruns

• swapping parameters buf and fp on  stack changes whether 

overrunning buf can corrupt fp

• which is especially dangerous if fp is a function pointer

• hence it is safer to allocated array buffers ‘above’ all other 

local variables

First introduced by IBM’s ProPolice.

• A separate shadow stack 

• with copies of return addresses, used to check for corrupted 

return addresses

• Of course, the attacker should not be able to corrupt the 

shadow stack
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Windows 2003 Stack Protection

Nice example of the ways in which things can go wrong...

• Enabled with /GS command line option in Visual Studio

• When canary is corrupted, control is transferred to an exception 

handler

• Exception handler information is stored ... 

on the stack!

• Attacker can corrupt the exception handler info on the stack, in 

the process corrupt the canaries, and then let Stack Protection 

mechanism transfer control to a malicious exception handler

[http://www.securityfocus.com/bid/8522/info]

• Countermeasure: only allow transfer of control to registered 

exception handlers
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2. ASLR (Address Space Layout Randomisation)

• Attacker needs detailed info about memory layout 

– eg to jump to specific piece of code

– or to corrupt a pointer at known position on the stack

• Attacks become harder if we randomise the memory layout every 
time we start a program

• ie. change the offset of the heap, stack, etc, in memory by 
some random value

• Attackers can still analyse memory layout on their own laptop, 
but  will have to determine the offsets used on the victim’s 
machine to carry out an attack

• NB security by obscurity, despite its bad reputation, is a really 
great defense mechanism to annoy attackers!

• Once the offset leaks, we’re back to square one…
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3. Non-eXecutable memory (NX , WX,DEP)

Distinguish  

• X: executable memory (for storing code)

• W: writeable, non-executable memory (for storing data)

and let processor refuse to execute non-executable code

Attackers can then no longer jump to their own attack code,                          
as any input provide as attack code will be  non-executable

Aka DEP (Data Execution Prevention).

Intel calls it eXecute-Disable (XD) 

AMD calls it Enhanced Virus Protection

Limitation: this technique does not work for JIT (Just In Time) 
compilation, where e.g. JavaScript is compiled to machine code 
at run time.
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Defeating NX: return-to-libc attacks

With NX, code injection attacks no longer possible,                                            

but code reuse attacks still are...

• Attackers can no longer corrupt code or insert their own code,          
but can still corrupt code pointers 

• Called  control-flow hijack in SoK paper                                                                

So instead of jumping to own attack code  

corrupt return address to jump to existing code

esp. library code in libc

libc is a rich library that offers lots of functionality,                        eg.   
system(), exec(), 

which provides attackers with all they need...
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(ROP)

Next stage in evolution of attacks, as people removed or protected 
dangerous libc calls such as system()

Instead of using entire library call, attackers can

• look for gadgets, small snippets of code which end with a return, 
in the existing code base

...; ins1 ; ins2 ; ins3 ; ret

• chain these gadgets together as subroutines to form a program 
that does what they want

This turns out to be doable

• Most libraries contain enough gadgets to provide a Turing 
complete programming language

• ROP compilers can then translate arbitrary code to a string of 
these gadgets

A newer variant is Jump-Oriented Programming (JOP) which uses a 
different kind of code fragment as gadgets

64



More advanced defences

[See SoK Eternal War in Memory paper]
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Goals / Building blocks of attacks

• Code corruption attack                                                                               

Overwrite the original program code in memory; 

impossible with WX

• Control-flow hijack attack                                                                  

Overwrite a code pointer, eg return address, jump address, 
function pointer, or pointer in vtable of C++ object

• Data-only attack                                                                                              

Overwrite some data,  eg bool isAdmin;                                                                       

• Information leak                                                                      

Only reading some data; recall Heartbleed attack on TLS

66



Control flow hijack via code pointers

• A compiler translates  function calls in source code to                                                            
call <address> or JSR <address> in machine code                            

where <address> is the location of the code for the function. 

• For a  function call f(...) in C a static address (or offset) of the 

code for f may be known at compile time.                                                  

If compiler can  hard-code this in the binary, it is hard for the 
attacker to mess with, esp. with WX

• For a virtual function call o->m(...) in C++  the address of the 

code for m typically has to be determined at runtime, by 

inspecting the virtual function table (vtable).  

Even with WX attackers may be able to mess with (code 
pointers in) these tables
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Classification of defences [SoK paper]

• Probabilistic methods

Basic idea: add randomness to make attacks harder

– in location where certain data is located (eg ASLR),                                             

or in the way data is represented in memory (eg pointer 

encryption)

• Memory Safety

Basic idea: do additional bookkeeping & add runtime checks to 

prevent some illegal memory access

• Control-Flow Hijack Defenses

Basic idea: do additional bookkeeping & add runtime check to 

prevent strange control flow
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More randomness: Pointer Encryption (PointGuard) 

• Many buffer overflow attacks involve corrupting pointers,                  

pointers to data or code pointers

• To complicate this: store pointers encrypted in main memory,

unencrypted in registers

– simple & fast encryption scheme:  XOR with a fixed value, 

randomly chosen when a process starts

• Attacker can still corrupt encrypted pointers in memory,                        

but these will not decrypt to predictable values

– This uses encryption to ensure integrity.                                     

Normally NOT a good idea, but here it works.

• Next step: Data Space Randomisation (DSR)

– encrypt not just pointers, but store all data encrypted in 

memory
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More memory safety

Additional book keeping of meta-data                                                           

& extra runtime checks to prevent illegal memory access

Different possibilities

• add information to pointer about size of memory chunks it points 

to (fat pointers)

• add information to memory chunks about their size (Spatial 

safety with object bounds)

• …

70

ptr



Fat pointers

The compiler

• records size information for all pointers  

• adds runtime checks for pointer arithmetic & array indexing

A pointer     

A fat pointer 

Downsides

• Considerable execution time overhead

• Not binary compatible – ie all code needs to be compiled to add

this book keeping for all pointers
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More memory safety

Additional book keeping of meta-data                                                          

& extra runtime checks to prevent illegal memory access

Different possibilities

• add information to pointer about size of memory chunks it points 

to (fat pointers)

• add information to memory chunks about their size (Spatial 

safety with object bounds)

• keep a shadow administration of this meta-data, separate from 

the pointers & the existing memory (SoftBounds)

• keep a shadow administration of which memory cells have been 

allocated (Valgrind, Memcheck, AddressSanitizer or ASan)

– to also spot temporal bugs, ie. malloc/free bugs 

72

ptr



Object-based temporal safety (Valgrind, Memcheck, ASan)

Shadow admin                                     

of allocated memory

to keep track of which memory is allocated, to generate runtime 

error when code tries to read/write unallocated memory

• Can also catch spatial bugs, ie. small buffer overruns, by keeping 

empty space between allocated chunks (unless overrun is huge)

– small overrun will end up in this unallocated space 

• Cannot spot illegal access via a stale pointer if the data chunk it 

points to  has been re-allocated 

• (eg last bug, line 3004, on slide 14)
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Guard pages to improve memory safety

Allocate chunks with the end at a page boundary with a non-

readable, non-writeable page        between them

Buffer overwrite or overread will cause a memory fault.

Considerable memory overhead
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Control Flow Integrity (CFI)

Extra bookkeeping & checks to spot unexpected control flow

• Dynamic return integrity

Stack canaries, or shadow stack that keeps copies of all return 

addresses, providing extra check against corruption of return 

addresses

• Static control flow integrity

Idea: determine the control flow graph (cfg) and monitor jumps 

in the control flow  to spot deviant behavior

If f() never calls g(), because g()does not even occur in 

the code of f(), then call from f() to g() is suspect, as is a 

return from g() to f()

This can detect Return-to-libc and ROP attacks
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Static control flow integrity: example code & CFG

Before and/or after every control transfer (function call or return) 

we could check if it is legal – ie. allowed by the cfg

Some weird returns would still be allowed

• eg if we call h() from g(), and the return is to f(), this would be 

allowed by the static cfg

• Additional dynamic return integrity check can narrow this down 

to actual call site – using recorded call site on shadow stack

void f() {

... ; g();

... ; g();

... ; h();

...

}

void g(){ ..h();}

void h(){ ... }
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Downsides of static control flow integrity checks

• Requires a whole program analysis

• Use of function pointers in C or virtual functions in C++ (that both 

result in so-called indirect control transfers) complicate   

compile-time analysis of the cfg: we’d need

• a points-to analysis to determine where such code pointers 

can point to

eg in C++,  if Animal->eat() can resolve to                 

Cat->eat() or Dog->eat(), so both these addresses              

are valid targets for transferring control

• or: simply allow transfer to any function entry point
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Exam questions: you should be able to

• Explain how simple buffer overflows work & what root causes are

• Spot a simple buffer overflow, memory-allocation problem, 

format string attack, or integer overflow in some C code 

• Explain how countermeasures - such as stack canaries, non-

executable memory, ASLR, CFI, bounds checkers, pointer 

encryption, … - work

• Explain why they might not always work


