
Software Security

Security Testing

especially

Fuzzing

Erik Poll

Security in the SDLC

2

Last week: static analysis aka code review tools

This week: security testing

Security testing can be used to find many kinds of security flaws, but focus of

this lecture – and the group assignment – will be on use om testing C(++) code

for memory corruption

Fuzzing group project

• Form a team with 4 students

• Choose an open-source C(++) application that can take input from

the command line in some complex file format

– For instance, any graphics library for image manipulation

– Check if this application is mentioned on http://lcamtuf.coredump.cx/ -

if so you may want to test old version

• Try out the fuzzing tools (Radamsa, zuff, and afl) with/without

instrumentation with additional checks for memory safety code

(valgrind, ASan)

• Optional variations: report any bugs found, check against known CVEs,

test older vs newer release, try different settings or inputs for the tool, try

another fuzzing tool, …

3

Overview

• Testing basics

• Abuse cases & negative tests

• Fuzzing

– Dumb fuzzing

– Mutational Fuzzing

• example: OCPP

– Generational aka grammar-based fuzzing

• example: GSM

– Whitebox fuzzing with SAGE

• looking at symbolic execution of the code

– Evolutionary fuzzing with afl

• grey-box, observing execution of the (instrumented) code

4

Testing basics

5

SUT, test suite & test oracle

To test a SUT (System Under Test) we need two things

1. test suite, ie. collection of input data

2. a test oracle

that decides if a test was passed ok or reveals an error

- ie. some way to decide if the SUT behaves as we want

Both defining test suites and test oracles can be a lot of work!

• In the worst case, a test oracle is a long list which for every
individual test case, specifies exactly what should happen

• A simple test oracle: just looking if application doesn’t crash

Moral of the story: crashes are good ! (for testing)

6

Code coverage criteria

Code coverage criteria to measure how good a test suite is include

• statement coverage

• branch coverage

Statement coverage does not imply branch coverage; eg for

void f (int x, y) { if (x>0) {y++};

y--; }

Statement coverage needs 1 test case, branch coverage needs 2

• More complex coverage criteria exists, eg MCDC (Modified

condition/decision coverage), commonly used in avionics

Possible perverse effect of coverage criteria

High coverage criteria may discourage defensive programming, eg.

void m(File f){

if <security_check_fails> {log (...);

throw (SecurityException);}

try { <the main part of the method> }

catch (SomeException) { log(...);

<some corrective action>;

throw (SecurityException); }

}

If the green defensive code, ie. the if & catch branch, is hard to

trigger in tests, then programmers may be tempted (or forced) to

remove this code to improve test coverage...

8

Abuse cases

&

Negative testing

10

Testing for functionality vs testing for security

• Normal testing will look at right, wanted behaviour for sensible

inputs (aka the happy flow), and some inputs on borderline

conditions

• Security testing also requires looking for the wrong, unwanted

behaviour for really strange inputs

• Similarly, normal use of a system is more likely to reveal

functional problems than security problems:

– users will complain about functional problems,

hackers won't complain about security problems

11

Security testing is HARD

12

space of all possible inputs

normal

inputs
. input that triggers

security bug

.
. .

.. .

. some input

Abuse cases & negative test cases

• Thinking about abuse cases is a useful way to come up with

security tests

– what would an attacker try to do?

– where could an implementation slip up?

• This gives rise to negative test cases,

i.e. test cases which are supposed to fail

13

iOS goto fail SSL bug

...

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

err = sslRawVerify(...);

. . .

14

Negative test cases for flawed certificate chains

• David Wheeler's 'The Apple goto fail vulnerability: lessons learned'

gives a good discussion of this bug & ways to prevent it, incl. the

need for negative test cases

http://www.dwheeler.com/essays/apple-goto-fail.html

• The FrankenCert test suite provides (broken) certificate chains to test for

flaws in the program logic for handling certificate flaws.

[Brubaker et al, Using Frankencerts for Automated Adversarial Testing of Certificate

Validation in SSL/TLS Implementations, Oakland 2014]

• Code coverage requirements on the test suite would also have helped.

15

Fuzzing

16

Fuzzing

• Fuzzing aka fuzz testing is a highly effective, largely automated,

security testing technique

• Basic idea: (semi) automatically generate random inputs and see if

an application crashes

– So we are NOT testing functional correctness (compliance)

• The original form of fuzzing: generate very long inputs and see if

the system crashes with a segmentation fault.

– What kind of bug would such a segfault signal?

• A buffer overflow problem

– Why would inputs ideally be very long?

• To make it likely that buffer overruns cross segment boundaries, so

that the OS triggers a fault

17

Simple fuzzing ideas

What inputs would you use for fuzzing?

• very long or completely blank strings

• min/max values of integers, or simply zero and negative values

• depending on what you are fuzzing, include special values,

characters or keywords likely to trigger bugs, eg

– nulls, newlines, or end-of-file characters

– format string characters %s %x %n

– semi-colons, slashes and backslashes, quotes

– application specific keywords halt, DROP TABLES, ...

–

18

Pros & cons of fuzzing

Pros

• Very little effort:

– the test cases are automatically generated,

and test oracle is simply looking for crashes

• Fuzzing of a C/C++ binary can quickly give a good picture of

robustness of the code

Cons

• Will not find all bugs

• Crashes may be hard to analyse; but a crash is a clear true positive
that something is wrong!

• For programs that take complex inputs, more work will be needed

to get good code coverage, and hit interesting test cases.

This has lead to lots of work on 'smarter' fuzzers.

19

Improved crash/error detection

Making systems crash on errors is useful for fuzzing!

So when fuzzing C(++) code, the memory safety checks listed in the

SoK paper (discussed in week 2/3) can be deployed to make systems

more likely to crash when memory corruption happens

– Ideally checks both for spatial buffer overruns & for temporal

malloc/free bugs, eg using tools like valgrind, MemCheck, and

AddressSanitizer

20

Types of fuzzers

1) Mutation-based: apply random mutations to set of valid inputs

• Eg observe network traffic, than replay with some modifications

• More likely to produce interesting invalid inputs than just random input

2) Generation-based aka grammar-based: generate semi-well-formed

inputs from scratch, based on knowledge of file format or protocol

• Tailor-made fuzzer fo specific input format, or generic fuzzer

configured with a grammar

• Downside: more work to construct the fuzzer

3) Evolutionary: observe how inputs are processed to learn which

mutations are interesting

• For example, afl, which uses a greybox approach

4) Whitebox approaches: analyse source code to construct inputs

• For example, SAGE

22

Example mutational fuzzing

23

Example: Fuzzing OCPP [research internship Ivar Derksen]

• OCPP is a protocol for charge points

to talk to a back-end server

• OCPP can use XML or JSN messages

Example message in JSN format

{ "location": NijmegenMercator215672,

"retries": 5,

"retryInterval": 30,

"startTime": "2018-10-27T19:10:11",

"stopTime": "2018-10-27T22:10:11" }

24

Example: Fuzzing OCPP

Simple classification of messages into

1. malformed JSN/XML

(eg missing quote, bracket or comma)

2. well-formed JSN/XML, but not legal OCPP

(eg using field names that are not in the OCPP specs)

3. well-formed OCPP

can be used for a simple test oracle:

• Malformed messages (type 1 & 2) should generate generic error response

• Well-formed messages (type 3) should not

• The application should never crash

Note: this does not require any understanding of the protocol semantics yet!

Figuring out correct responses to type 3 would.

25

Test results with fuzzing OCPP server

• Mutation fuzzer generated 26,400 variants from 22 example OCPP

messages in JSN format

• Problems spotted by this simple test oracle:

– 945 malformed JSN requests (type 1) resulted in malformed JSN

response

Server should never emit malformed JSN!

– 75 malformed JSN requests (type 1) and 40 malformed OCPP requests

(type 2) result in a valid OCPP response that is not an error message.

Server should not process malformed requests!

• One root cause of problems: the Google’s gson library for parsing JSN by

default uses lenient mode rather than strict mode

– Why does gson even have a lenient mode, let alone by default?

• Fortunately, gson is written in Java, not C(++), so these flaws do not result

in exploitable buffer overflows

26

Generational fuzzing

aka

Grammar-based fuzzing

27

CVEs as inspiration for fuzzing file formats

• Microsoft Security Bulletin MS04-028

Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution

Impact of Vulnerability: Remote Code Execution

Maximum Severity Rating: Critical

Recommendation: Customers should apply the update immediately

Root cause: a zero sized comment field, without content.

• CVE-2007-0243

Sun Java JRE GIF Image Processing Buffer Overflow Vulnerability
Critical: Highly critical Impact: System access Where: From remote

Description: A vulnerability has been reported in Sun Java Runtime

Environment (JRE). … The vulnerability is caused due to an error when

processing GIF images and can be exploited to cause a heap-based

buffer overflow via a specially crafted GIF image with an image width of 0.

Successful exploitation allows execution of arbitrary code.

Note: a buffer overflow in (native library of) a memory-safe language

28

Generation-based fuzzing

For a given file format or communication protocol, a generational

fuzzer tries to generate files or data packets that are slightly

malformed or hit corner cases in the spec.

Possible starting : a

grammar defining legal inputs,

or a data format specification

Typical things to fuzz:

• many/all possible value for specific fields

esp undefined values, or values Reserved for Future Use (RFU)

• incorrect lengths, lengths that are zero, or payloads that are too

short/long

Tools for building such fuzzers:

SNOOZE, SPIKE, Peach, Sulley, antiparser, Netzob, ...

29

Example : generation based fuzzing of GSM

[MSc theses of Brinio Hond and Arturo Cedillo Torres]

GSM is a extremely rich & complicated protocol

30

SMS message fields

Field size

Message Type Indicator 2 bit

Reject Duplicates 1 bit

Validity Period Format 2 bit

User Data Header Indicator 1 bit

Reply Path 1 bit

Message Reference integer

Destination Address 2-12 byte

Protocol Identifier 1 byte

Data Coding Scheme (CDS) 1 byte

Validity Period 1 byte/7 bytes

User Data Length (UDL) integer

User Data depends on CDS and UDL

31

Example: GSM protocol fuzzing

Lots of stuff to fuzz!

We can use a USRP

with open source cell tower software (OpenBTS)

to fuzz any phone

32

Example: GSM protocol fuzzing

Fuzzing SMS layer of GSM reveals weird functionality in GSM standard

and in phones

33

Example: GSM protocol fuzzing

Fuzzing SMS layer of GSM reveals weird functionality in GSM standard

and in phones

– eg possibility to receive faxes (!?)

Only way to get rid if this icon; reboot the phone

34

you have a fax!

Example: GSM protocol fuzzing

Malformed SMS text messages showing raw memory contents, rather

than content of the text message

35

Our results with GSM fuzzing

• Lots of success to DoS phones: phones crash, disconnect from the

network, or stop accepting calls

– eg requiring reboot or battery removal to restart, to accept calls again,

or to remove weird icons

– after reboot, the network might redeliver the SMS message, if no

acknowledgement was sent before crashing, re-crashing phone

But: not all these SMS messages could be sent over real network

• There is surprisingly little correlation between problems and phone

brands & firmware versions

– how many implementations of the GSM stack did Nokia have?

• The scary part: what would happen if we fuzz base stations?

[Fabian van den Broek, Brinio Hond and Arturo Cedillo Torres, Security Testing of

GSM Implementations, Essos 2014]

[Mulliner et al., SMS of Death, USENIX 2011]

36

Security problem with more complex input formats

37

Example dangerous

SMS text message

• This message can be sent over the network

• Different characters sets or characters encoding, are a constant

source of problems. Many input formats rely on underlying notion of

characters.

Example: Fuzzing fonts

Google’s Project Zero found many Windows kernel vulnerabilities by fuzzing

fonts in the Windows kernel

https://googleprojectzero.blogspot.com/2017/04/notes-on-windows-uniscribe-fuzzing.html

38

Even handling simple input languages can go wrong!

Sending an extended length APDU can crash a contactless payment

terminal.

• Found without even trying to fuzz, but by sending allowed (albeit

non-standard) messages

[Jordi van den Breekel, A security evaluation and proof-of-concept relay attack on

Dutch EMV contactless transactions, MSc thesis, 2014]

39

Whitebox fuzzing with SAGE

40

Whitebox fuzzing using symbolic execution

• The central problem with fuzzing:

how can we generate inputs that trigger interesting code

executions?

– Eg fuzzing the procedure below is unlikely to hit the error case

int foo(int x) {

y = x+3;

if (y==13) abort(); // error

}

• The idea behind whitebox fuzzing: if we know the code, then by

analysing the code we can find interesting input values to try.

• SAGE (Scalable Automated Guided Execution) is a tool from

Microsoft Research that uses symbolic execution of x86 binaries to

generate test cases.

41

m(int x,y){

x = x + y;

y = y – x;

if (2*y > 8) { ...

}

else if (3*x < 10){ ...

}

}

42

Can you provide values for x and y

that will trigger execution of the

two if-branches?

Symbolic execution
m(int x,y){

x = x + y;

y = y – x;

if (2*y > 8) { ...

}

else if (3*x < 10){ ...

} }

We can use SMT solver (Yikes, Z3, ...) aka constraint solver for this:

given a set of constraints such a tool produces test data that meets

them, or proves that they are not satisfiable.

This generates test data (i) automatically and (ii) with good coverage

• These tools can also be used in static analyses as in PREfast, or more

generally, for program verification

43

Suppose x = N and y = M.

x becomes N+M

y becomes M-(N+M) = -N

if-branch taken if -2N > 8, i.e. N < -4

Aka the path condition

2nd if-branch taken if
N ≥ -4 & 3(M+N) < 10

Symbolic execution for test generation

• Symbolic execution can be used to automatically generate test

cases with good coverage

• Basic idea of symbolic execution:

instead of giving variables concrete values (say 42), variables are

given symbolic values (say α), and program is executed with these

symbolic values to see when certain program points are reached

• Downside of symbolic execution:

– it is very expensive (in time & space)

– things explode with loops

– …

SAGE mitigates this by using a single symbolic execution to

generate many test inputs for many execution paths

44

SAGE example

Example program

void top(char input[4]) {

int cnt = 0;

if (input[0] == 'b') cnt++;

if (input[1] == 'a') cnt++;

if (input[2] == 'd') cnt++;

if (input[3] == '!') cnt++;

if (cnt >= 3) crash();

}

What would be interesting test cases? How could you find them?

45

SAGE example

Example program

void top(char input[4]) {

int cnt = 0;

if (input[0] == 'b') cnt++;

if (input[1] == 'a') cnt++;

if (input[2] == 'd') cnt++;

if (input[3] == '!') cnt++;

if (cnt >= 3) crash();

}

SAGE executes the code for some concrete input, say 'good'

It then collects path constraints for an arbitrary symbolic input of the

form i0i1i2i3

46

path contraints:

i0 ≠ 'b'

i1 ≠ 'a'

i2 ≠ 'd'

i3 ≠ '!'

i0 ≠ 'b'

i3 ≠ '!'

i0 = 'b'

i2 ≠ 'd'

i1 = 'a'

i2 = 'd'

i3 = '!'

i1 = 'a'i1 ≠ 'a' i1 ≠ 'a'

Search space for interesting inputs

Based on this one execution, combining all these constraints now

yields 16 test cases

Note: the initial execution with the input ‘good’ was not very

interesting, but these others are

47

SAGE success

• SAGE proved successful at uncovering security bugs, eg

Microsoft Security Bulletin MS07-017 aka CVE-2007-0038: Critical

Vulnerabilities in GDI Could Allow Remote Code Execution

Stack-based buffer overflow in the animated cursor code in Microsoft

Windows 2000 SP4 through Vista allows remote attackers to execute

arbitrary code or cause a denial of service (persistent reboot) via a

large length value in the second (or later) anih block of a RIFF .ANI,

cur, or .ico file, which results in memory corruption when processing

cursors, animated cursors, and icons

Security vulnerablity in parsing ANI/cur/ico-formats. SAGE generated

(semi)well-formed input triggering the bug without knowing these formats

• First experiments with SAGE also found bugs in handling a compressed file

format, media file formats, and generated 43 test cases to crash Office

2007

48

Evolutionary Fuzzing with afl

(American Fuzzy Lop)

49

Evolutionary Fuzzing with afl

• Downside of generation-based fuzzing:

– lots of work work to write code to do the fuzzing, even if you use

tools to generate this code based on some grammar

• Downside of mutation-based fuzzer:

– chance that random changes in inputs hits interesting cases is

small

• afl (American Fuzzy Lop) takes an evolutionary approach to learn

interesting mutations based on measuring code coverage

– basic idea: if a mutation of the input triggers a new execution

path through the code, then it is an interesting mutation & it is

kept; if not, the mutation is discarded.

– by trying random mutations of the input and observering their

effect on code coverage, afl can learn what interesting inputs

are

50

afl [http://lcamtuf.coredump.cx/afl]

• Supports programs written in C/C++/Objective C and variants for

Python/Go/Rust/OCaml

• Code instrumented to observe execution paths:

– if source code is available, by using modified compiler

– if source code is not available, by running code in an emulator

• Code coverage represented as a 64KB bitmap, where control flow

jumps are mapped to changes in this bitmap

– different executions could result in same bitmap, but chance is small

• Mutation strategies include: bit flips, incrementing/decrementing

integers, using pre-defined interesting integer values (eg. 0, -1,

MAX_INT,....), deleting/combining/zeroing input blocks, ...

• The fuzzer forks the SUT to speed up the fuzzing

• Big win: no need to specify the input format!

51

afl’s instrumentation of compiled code

Code is injected at every branch point in the code

cur_location = <COMPILE_TIME_RANDOM_FOR_THIS_CODE_BLOCK>;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

where shared_mem is a 64 KB memory region

Intuition: for every jump from src to dest in the code a different byte

in shared_mem is changed.

This byte is determined by the compile time randoms inserted at

source and destination.

52

Cool example: learning the JPG file format

• Fuzzing a program that expects a JPG as input, starting with 'hello

world' as initial test input, afl can learn to produce legal JPG files

– along the way producing/discovering error messages such as

• Not a JPEG file: starts with 0x68 0x65

• Not a JPEG file: starts with 0xff 0x65

• Premature end of JPEG file

• Invalid JPEG file structure: two SOI markers

• Quantization table 0x0e was not defined

and then JPGs like

[Source http://lcamtuf.blogspot.nl/2014/11/pulling-jpegs-out-of-thin-air.html]

53

Vulnerabilities found with afl

54

IJG jpeg 1 libjpeg-turbo 1 2 libpng 1

libtiff 1 2 3 4 5 mozjpeg 1 PHP 1 2 3 4 5

Mozilla Firefox 1 2 3 4 Internet Explorer 1 2 3 4 Apple Safari 1

Adobe Flash / PCRE 1 2 3 4 sqlite 1 2 3 4... OpenSSL 1 2 3 4 5 6 7

LibreOffice 1 2 3 4 poppler 1 freetype 1 2

GnuTLS 1 GnuPG 1 2 3 4 OpenSSH 1 2 3

PuTTY 1 2 ntpd 1 2 nginx 1 2 3

bash (post-Shellshock) 1 2 tcpdump 1 2 3 4 5 6 7 8 9 JavaScriptCore 1 2 3 4

pdfium 1 2 ffmpeg 1 2 3 4 5 libmatroska 1

BIND 1 2 3 ... QEMU 1 2 lcms 1

Oracle BerkeleyDB 1 2 Android / libstagefright 1 2 iOS / ImageIO 1

FLAC audio library 1 2 libsndfile 1 2 3 4 less / lesspipe 1 2 3

strings (+ related tools) 1 2 3 4 5 6 7 file 1 2 3 4 dpkg 1 2

Info-Zip unzip 1 2 libtasn1 1 2 ... OpenBSD pfctl 1

NetBSD bpf 1 man & mandoc 1 2 3 4 5 ... IDA Pro [reported by authors]

clang / llvm 1 2 3 4 5 6 7 8 ... nasm 1 2 ctags 1

mutt 1 procmail 1 fontconfig 1

pdksh 1 2 Qt 1 2... wavpack 1

redis / lua-cmsgpack 1 taglib 1 2 3 privoxy 1 2 3

perl 1 2 3 4 5 6 7... libxmp radare2 1 2

SleuthKit 1 fwknop [reported by author] X.Org 1 2

exifprobe 1 jhead [?] capnproto 1

Xerces-C 1 2 3 metacam 1 djvulibre 1

exiv 1 Linux btrfs 1 2 3 4 6 7 8 Knot DNS 1

http://seclists.org/fulldisclosure/2013/Nov/83
http://seclists.org/fulldisclosure/2013/Nov/83
http://seclists.org/fulldisclosure/2013/Nov/83
http://tfpwn.com/files/libpng_heap_overflow_1.6.15.txt
http://www.asmail.be/msg0054698178.html
http://www.conostix.com/pub/adv/CVE-2014-8127-LibTIFF-Out-of-bounds_Reads.txt
http://www.conostix.com/pub/adv/CVE-2014-8128-LibTIFF-Out-of-bounds_Writes.txt
http://www.conostix.com/pub/adv/CVE-2014-8129-LibTIFF-Out-of-bounds_Reads_and_Writes.txt
http://www.openwall.com/lists/oss-security/2015/01/24/16
https://github.com/mozilla/mozjpeg/issues/141
https://bugs.php.net/bug.php?id=68799
https://bugs.php.net/bug.php?id=68545
https://bugs.php.net/bug.php?id=69139
https://bugs.php.net/bug.php?id=70083
https://bugs.php.net/bug.php?id=70385
http://lcamtuf.blogspot.com/2014/09/cve-2014-1564-uninitialized-memory-when.html
http://lcamtuf.blogspot.com/2014/10/two-more-browser-memory-disclosure-bugs.html
https://www.mozilla.org/en-US/security/advisories/mfsa2015-02/
https://www.mozilla.org/en-US/security/advisories/mfsa2015-10/
http://lcamtuf.blogspot.com/2014/10/two-more-browser-memory-disclosure-bugs.html
http://lcamtuf.blogspot.com/2015/02/bi-level-tiffs-and-tale-of-unexpectedly.html
http://lcamtuf.blogspot.com/2015/03/another-round-of-image-bugs-png-and.html
http://lcamtuf.blogspot.com/2015/03/another-round-of-image-bugs-png-and.html
https://support.apple.com/en-us/HT205030
https://code.google.com/p/google-security-research/issues/detail?id=225
https://code.google.com/p/google-security-research/issues/detail?id=208
https://blog.fuzzing-project.org/29-Heap-Overflow-in-PCRE.html
https://bugs.exim.org/show_bug.cgi?id=1780
https://www.sqlite.org/src/info/a59ae93ee990a55
https://www.sqlite.org/src/info/9e6eae660a0230
https://www.sqlite.org/src/info/e098de69100
http://lcamtuf.blogspot.com/2015/04/finding-bugs-in-sqlite-easy-way.html
https://mta.openssl.org/pipermail/openssl-announce/2015-March/000026.html
https://www.openssl.org/news/secadv_20150611.txt
https://jbp.io/2015/06/11/cve-2015-1788-openssl-binpoly-hang/
https://blog.fuzzing-project.org/15-Out-of-bounds-read-in-OpenSSL-function-X509_cmp_time-CVE-2015-1789-and-other-minor-issues.html
https://openssl.org/news/secadv/20151203.txt
https://marc.info/?l=openssl-dev&m=145890788100691&w=2
https://www.openssl.org/news/secadv/20160503.txt
http://sourceforge.net/p/libwpd/tickets/3/
http://listarchives.documentliberation.org/www/discuss/msg00102.html
http://listarchives.documentliberation.org/www/discuss/msg00099.html
http://comments.gmane.org/gmane.comp.documentfoundation.libreoffice.devel/63005
https://bugs.freedesktop.org/show_bug.cgi?id=86854
http://git.savannah.gnu.org/cgit/freetype/freetype2.git/commit/?id=b94381134efd41c6885d38e08d14106feec7284b
http://git.savannah.gnu.org/cgit/freetype/freetype2.git/commit/?id=c9ca6ffc9442b4b127f948e2d993454aa7791e59
https://bugzilla.redhat.com/show_bug.cgi?id=1161443
http://lists.gnupg.org/pipermail/gnupg-announce/2014q4/000359.html
https://blog.fuzzing-project.org/2-Buffer-overflow-and-other-minor-issues-in-GnuPG-and-libksba-TFPA-0012014.html
https://blog.fuzzing-project.org/5-Multiple-issues-in-GnuPG-found-through-keyring-fuzzing-TFPA-0012015.html
https://blog.fuzzing-project.org/7-Multiple-vulnerabilities-in-GnuPG,-libksba-and-GpgOL-TFPA-0032015.html
http://lists.mindrot.org/pipermail/openssh-commits/2014-November/004134.html
http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/krl.c.diff?r1=1.18&r2=1.19&f=h
http://marc.info/?l=openbsd-cvs&m=141680037829200&w=2
http://www.chiark.greenend.org.uk/~sgtatham/putty/wishlist/vuln-ech-overflow.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/wishlist/vuln-ecdsa-newkey.html
http://support.ntp.org/bin/view/Main/NtpBug2922
http://dumpco.re/cve-2016-7434/
http://hg.nginx.org/nginx/rev/22ee99422329
http://hg.nginx.org/nginx/rev/b6a665bf858a
http://hg.nginx.org/nginx/rev/60f916da7294
http://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
http://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
http://seclists.org/bugtraq/2014/Nov/89
http://seclists.org/bugtraq/2014/Nov/90
http://seclists.org/bugtraq/2014/Nov/88
http://marc.info/?l=openbsd-cvs&m=141645584025575&w=2
http://marc.info/?l=openbsd-cvs&m=141645608125637&w=2
http://marc.info/?l=openbsd-cvs&m=141645675525861&w=2
http://marc.info/?l=openbsd-cvs&m=141761276914482&w=2
https://github.com/the-tcpdump-group/tcpdump/issues/446
https://github.com/the-tcpdump-group/tcpdump/issues/496
https://bugs.webkit.org/show_bug.cgi?id=141070
https://bugs.webkit.org/show_bug.cgi?id=141187
https://bugs.webkit.org/show_bug.cgi?id=141028
https://bugs.webkit.org/show_bug.cgi?id=141194
https://code.google.com/p/chromium/issues/detail?id=459654
https://code.google.com/p/chromium/issues/detail?id=459654
https://github.com/FFmpeg/FFmpeg/commit/e8714f6f93d1a32f4e4655209960afcf4c185214
http://git.videolan.org/?p=ffmpeg.git;a=commitdiff;h=2a983ff7fe076ae93926eb33cfb44ca49183dacc
https://github.com/mpv-player/mpv/issues/1448
https://github.com/mpv-player/mpv/issues/1420
http://obe.tv/about-us/obe-blog/item/26-fuzzing-ffmpeg-for-fun-and-profit
https://trac.bunkus.org/changeset/1ed73349c565132b68ccc1819795e51aa917c865
https://kb.isc.org/article/AA-01272
https://kb.isc.org/article/AA-01287
https://kb.isc.org/article/AA-01291
http://lists.nongnu.org/archive/html/qemu-devel/2015-07/msg05188.html
http://lists.nongnu.org/archive/html/qemu-devel/2015-07/msg05421.html
https://github.com/mm2/Little-CMS/issues/43
http://download.oracle.com/otndocs/products/berkeleydb/html/changelog_6_1.html
http://www.oracle.com/technetwork/topics/security/cpujul2015-2367936.html
http://events.linuxfoundation.org/sites/events/files/slides/ABS2015.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://support.apple.com/en-us/HT205030
http://www.openwall.com/lists/oss-security/2015/02/13/6
https://git.xiph.org/?p=flac.git;a=commit;h=43ba7ad05f1656e885ce2f34a9a72494f45705ae
https://github.com/erikd/libsndfile/commit/a8ab5b375bf7faa040ae0dd4743f8c99a027574a
https://github.com/erikd/libsndfile/commit/e67d42d5585d4e14973b773293054545a377691b
https://github.com/erikd/libsndfile/commit/a0177b4076642fd92a3bc6409debcbd0ae7f32ac
http://www.nemux.org/2015/10/13/libsndfile-1-0-25-heap-overflow/
http://seclists.org/fulldisclosure/2014/Nov/74
https://lists.gnu.org/archive/html/bug-unrtf/2014-11/msg00001.html
http://seclists.org/oss-sec/2014/q4/870
http://lcamtuf.blogspot.com/2014/10/psa-dont-run-strings-on-untrusted-files.html
https://sourceware.org/bugzilla/show_bug.cgi?id=17512#c91
https://lists.fedorahosted.org/pipermail/elfutils-devel/2014-October/004215.html
https://lists.fedorahosted.org/pipermail/elfutils-devel/2014-November/004230.html
https://sourceware.org/bugzilla/show_bug.cgi?id=17531#c31
http://seclists.org/oss-sec/2014/q4/629
https://sourceware.org/bugzilla/show_bug.cgi?id=17605
https://www.freebsd.org/security/advisories/FreeBSD-SA-14:16.file.asc
http://bugs.gw.com/view.php?id=409
http://bugs.gw.com/view.php?id=454
http://bugs.gw.com/view.php?id=459
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=768485
https://blog.fuzzing-project.org/30-Stack-overflows-and-out-of-bounds-read-in-dpkg-Debian.html
http://seclists.org/oss-sec/2014/q4/489
http://www.openwall.com/lists/oss-security/2015/02/17/4
https://blog.fuzzing-project.org/6-Stack-overflow-in-libtasn1-TFPA-0022015.html
https://blog.fuzzing-project.org/9-Heap-overflow-invalid-read-in-Libtasn1-TFPA-0052015.html
http://marc.info/?l=openbsd-cvs&m=141646270127039&w=2
http://mail-index.netbsd.org/source-changes/2015/02/11/msg063056.html
http://marc.info/?l=openbsd-cvs&m=141653478623314&w=2
http://mdocml.bsd.lv/ChangeLog
http://marc.info/?l=openbsd-cvs&m=141868697709991&w=2
http://marc.info/?l=openbsd-cvs&m=141869291513288&w=2
http://marc.info/?l=openbsd-cvs&m=141870196617371&w=2
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-December/079421.html
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-December/079456.html
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2015-January/040705.html
http://llvm.org/klaus/llvm/commit/018347762188a984d9c76dfb68b6140261b99f2c/
http://llvm.org/klaus/llvm/commit/5d8bb5c7c5412fa6f54d5c9d6cf1878ed772a240/
http://llvm.org/klaus/llvm/commit/1897b5c08c96777547de1c71e617757314a991ca/
http://llvm.org/klaus/llvm/commit/deedba2a369a693905c467b805449a3109fca6c7/
http://llvm.org/klaus/llvm/commit/8b2199e2a28b75ff3edf36fc7157085da31301cf/
http://bugzilla.nasm.us/show_bug.cgi?id=3392290
http://bugzilla.nasm.us/show_bug.cgi?id=3392292
http://marc.info/?l=openbsd-cvs&m=141801116304828&w=2
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=771125
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=769937
http://cgit.freedesktop.org/fontconfig/commit/?id=fc7e1a9497919c88d790d9395eb01cd7d5121507
http://marc.info/?l=openbsd-cvs&m=141804880915781&w=2
http://marc.info/?l=openbsd-cvs&m=141836050810413&w=2
https://bugreports.qt.io/browse/QTBUG-43513
https://bugreports.qt.io/issues/?jql=labels %3D found_by_afl
https://github.com/dbry/WavPack/commit/5d4e146c9f40b08c6a2a6c35dd8340f7fb1d837c
https://github.com/antirez/redis/issues/2210
https://github.com/taglib/taglib/issues/468
https://github.com/taglib/taglib/issues/480
https://github.com/taglib/taglib/issues/483
https://www.fabiankeil.de/talks/fuzzing-on-freebsd/index.html
http://ijbswa.cvs.sourceforge.net/viewvc/ijbswa/current/filters.c?r1=1.196&r2=1.197
http://ijbswa.cvs.sourceforge.net/viewvc/ijbswa/current/parsers.c?r1=1.302&r2=1.303
https://rt.perl.org/Public/Bug/Display.html?id=123539
https://rt.perl.org/Public/Bug/Display.html?id=123677
https://rt.perl.org/Public/Bug/Display.html?id=123542
https://rt.perl.org/Public/Bug/Display.html?id=123617
https://github.com/Perl/perl5/commit/b3725d49f914ef2bed63d7eb92a72ef6e886b489
http://www.gossamer-threads.com/lists/perl/porters/317228
https://groups.google.com/d/msg/afl-users/4XGI5WccJUo/ll9RH7AIz8UJ
https://github.com/radare/radare2/issues/1833
https://github.com/radare/radare2/issues/1839
https://sourceforge.net/p/sleuthkit/bugs/218/
http://www.openwall.com/lists/oss-security/2015/03/17/5
http://www.vuxml.org/freebsd/f7d79fac-cd49-11e4-898f-bcaec565249c.html
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=779525
https://capnproto.org/news/2015-03-02-security-advisory-and-integer-overflow-protection.html
http://xerces.apache.org/xerces-c/secadv/CVE-2015-0252.txt
http://xerces.apache.org/xerces-c/secadv/CVE-2016-0729.txt
http://xerces.apache.org/xerces-c/secadv/CVE-2016-4463.txt
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=779696
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=781255

Moral of the story

• If you ever produce code that handles some non-trivial input

format, run a tool like afl to look for bugs

55

Conclusions

• Fuzzing is great technique to find (a certain kind of) security flaws!

• If you ever write or deploy C(++) code, you should fuzz it.

• The bottleneck: how to do smart fuzzing without too much effort

Successful approaches include

– White-box fuzzing based on symbolic execution with SAGE

– Evolutionary mutation-based fuzzing with afl

• A newer generation of tools not only tries to find security flaws, but

also to then build exploits for them, eg. angr

To read (see links on the course page)

• David Wheeler, The Apple goto fail vulnerability: lessons learned

• Patrice Godefroid et al., SAGE: whitebox fuzzing for security

testing, ACM Queue

56

