
Program Verification
(6EC version only)

Erik Poll
Digital Security

Radboud University Nijmegen

Overview

• Program Verification using Verification Condition Generators

• JML – a formal specification language for Java

Used for the program verification exercise

2

Program verification

• Formally proving (in the mathematical/logical sense) that a

program satisfies some property

– eg that it does not crash, always terminates, never terminates,

meets some functional specification, meets some security

requirement, etc

– for all possible executions: ie all possible inputs and all possible

scheduling of parallel threads.

• NB in industry, the term verification is used for testing

but testing provides only weaker guarantees

– because testing will only try some executions

– except in rare case where you can do exhaustive testing

• Formal verification provides the highest level of assurance that

code is correct & secure

– provided… you can formally verify what it means for the

code to be secure

3

Example software verification for security: Hyper-V

Microsoft Hyper-V Hypervisor

• thin software layer that turns an x64 processor into multiple,

isolated virtual x64 processor

• 100 Kloc of C and 5 Kloc of assembly

Verified using VCC tool, that turns code & specifications into

verification conditions for theorem prover Z3

Info on VCC

http://research.microsoft.com/en-us/projects/vcc/

Video presentation on VCC

http://channel9.msdn.com/posts/Peli/Michal-Moskal-and-The-Verified-C-Compiler/

4

Example: seL4 microkernel

• microkernel – OS kernel that is kept to minimum code size

– in effort to reduce TCB

• seL4 is 8,700 lines of C code and 600 lines of assembly

• Verified using interactive theorem prover Isabelle/HOL

in L4.verified project at NICTA http://ts.data61.csiro.au/projects/TS/l4.verified

• Steps in the verification process

• Developing abstract, executable specification in Haskell

• Proving that C & machine code implementation behaves

identical to (technically – simulates) this Haskell prototype

• Proof size 200,000 lines of proof scripts

• Verification effort 11 person-year

5

Example verification for security: miTLS & HACL*

• miTLS is fully verified TLS 1.3 implementation

• Implementations in

• functional language F#

• ML-like functional language F*

https://mitls.org

• HACL* is a formally verified cryptographic library in F*

• can be compiled down to C

https://github.com/project-everest/hacl-star

6

What do we need for program verification?

1. a formal semantics of the programming language

2. a specification language to express properties

3. a logic to reason about programs and specifications

– aka a program logic

4. a verification tool to support all this

These topics are investigation in the field of field of formal methods

7

What to verify? Example

For the program

...

x[4] = false;

...

we might want to verify that here x is not null and 4 is within the

array bounds (and that x is a Boolean array)

• Proving absence of runtime exceptions (or, in an unsafe

language like C, memory-safety, or more generally, the

absence of undefined behavior) is a great bottom-line

specification to start verification!

• Typing is a simple form of program verification, for a limited and
relatively weak class of properties, eg “x is a byte array”

A type checker can be regarded as an automated program

verifier for this class of properties.

8

How to specify what we want to verify?

A common way to write we want to verify is using assertions, ie
properties that hold at specific program points

...

// assert x != NULL && x.length > 4;

x[4] = false;

...

Assertions written as annotations in code are also useful for

testing, and for generating bug reports.

For methods or procedures, we can give pre- and post-conditions

9

How to verify?

Is the assertion below always true?

...

if (x < y) { int z; z = y; y = x; x = z;}

// assert y <= x

How do your verify this?

• You follow all paths in the control flow graph, and check that for

each path the property holds using normal logical reasoning

Ways to formalize this reasoning process

• compute verification conditions using weakest precondition

calculation (or strongest postcondition ~)

• use symbolic execution to obtain these verification conditions

10

Complication 1 : cycles

Is the assertion below always true?

...

int i = x-y;

while (i > 0) { y++;

i--;

}

// assert y >= x

We can’t follow all paths through the control flow graph, as the

graph contains a cycle.

We need a loop invariant.

11

Complication 1 : cycles

Is the assertion below always true?

...

int i = x-y; // so y+i == x

while (i > 0) { y++; // now y+i == x+1

i--; // now y+i == x

}

// now i <= 0 (because we exited the while loop)

// and y+i == x (because it is a loop invariant)

// and therefore y >= x

Once we realise that y+i == x is a loop invariant, we can split

the graph in a finite number of segments, and check that each
segments meets the specification

12

Complication 2 : modularity & the heap

Programming languages offer procedures or methods for

modularity. This complicates reasoning.

...

x = 5;

p();

// assert x == 5

Is the assertion always true?

13

Complication 2 : modularity & the heap

If x is on the stack, the assertion is always true

proc m() {

int x;

x = 5;

p();

// assert x == 5

}

because x is out of scope for p()

• assuming that we are in a memory-safe language:

if p contains buffer overflows, pointer arithmetic, …

all bets are off!

14

Complication 2 : modularity & the heap

If x is on the heap, things become tricky

• even in a safe programming language!

In Java, will the assertion below always hold?

x = 5;

o.p();

// assert x == 5

15

Complication 2 : modularity & the heap

class A {

static int x = 12; // ie a class field

public void m() {

x = 5;

o.p();

// assert x == 5

}

...

Is the assert always true?

No, because o.p()might change A.x

16

Complication 2 : modularity & the heap

class A {

int x = 12;

public void m() {

x = 5;

o.p();

// assert x == 5

}

...

Is the assert always true?

No, because e.g.

• o could be aliased to this and o.p()could change x

• o could have a reference to this and then change x

by invoking a method or assignment to x if it is not private

17

Complication 3

...

x = 5;

// assert x == 5

Is the assertion always true?

18

Complication 3: concurrency & the heap

...

x = 5;

// assert x == 5

Is the assertion always true?

No, not if there is another thread running that may also be
accessing x

The problem, and possible solutions, are very similar to the

problem of modular reasoning about procedures/methods.

Solutions include separation logic, implicit dynamic frames, or

ownership

Newer programming languages such as Rust might be better

suited for reasoning about concurrency

19

Program Verification

using

Verification Condition Generation

20

Program Verification using VCGen

One of the standard approaches for program verification:

using Verification Condition Generator (VCGen):

1. Program is annotated with properties (the specification)

2. Verification Condition Generator produces a set of logical

properties, the so-called verification conditions

3. If these verification conditions are true, the annotations are

correct – ie the program satisfies the specification

21

annotated

program

verification

conditions
VCgen

(automated)

theorem

prover

OK / Not OK

22

Example verification using VCGen

//@ requires true;

//@ ensures \result > 5;

public int example(int j)

{

if (j < 8) {

int i = 2;

while (j < 6*i){

j = j + i;

}

}

return j;

}

These annotations give a

pre- and postcondition that

form the specification:

on any input, this method will

return a result greater than 5

• is this specification always met?

• how do you know this?

• could an automated tool

reproduce your reasoning?

23

Verification using VCGen

(i) program as graph

//@ ensures \result > 5;

public int example(int j)

{

if (j < 8) {

int i = 2;

while (j < 6*i){

j = j + i;

}

}

return j;

}

start

j=j+i

int i=2

return j

end

j<6*i

!(j<8)

j<8

!(j<6*i) while(j<6*i)

if(j<8)

24

Verification using VCGen

(ii) add assertions

//@ ensures \result > 5;

public int example(int j)

{

if (j < 8) {

int i = 2;

/*@ loop_invariant

i==2;

@*/

while (j < 6*i){

j = j + i;

}

}

return j;

}

start

j=j+i

int i=2

return j

end

j<6*i

!(j<8)

j<8

!(j<6*i) while(j<6*i)

if(j<8)

Post: \result > 5

Pre: true

Loop inv: i==2

end

while(j<6*i)

start

25

Verification using VCGen

(iii) compute VCs & check

start

j=j+i

int i=2

return j

end

j<6*i

!(j<8)

j<8

!(j<6*i) while(j<6*i)

if(j<8)

Compute WP:
j > 5

Post:

\result > 5

Pre: true

Loop inv: i==2

Compute WP:
i==2

Compute WP:
true

Compute WP:
true

return j

j=j+i

int i=2

if(j<8)

verification condition:

i==2 && !(j<6*i) ==> j>5

verification condition:

true ==> true

verification condition:

i==2 && j<6*i ==> i==2

26

Verification condition generation

Given a postcondition and loop invariants

• compute a assertion Ps for every state s

based on assertions Ps’ of the states s’ reachable from s

– key idea: Ps is the weakest predicate such that if it hold in state s,

and the program goes to state s’ then Ps’ will hold in that state s’

• all that remains to be verified

– Pre P0

the precondition specified in the program implies the assertion

computed for the initial state

– Loops Ps

each loop assertion specified in the program implies the assertion

computed for that state

27

“Opposite” approach:

forward instead of backwards
Instead of working backwards from the postcondition of the final

state, you can work forward from the precondition in the initial state:

you then compute strongest postconditions

instead of weakest preconditions

This is very similar to symbolic execution of a program.

28

Tricky issues in program verification

Whatever the approach, the bottlenecks in program verification

remain…

1. pointers / references & the heap

Reasoning about data on the heap is difficult.

Even in a language with automatic memory management,

such as Java or C#, we still have the complication of

aliasing

2. concurrency aka multi-threading

JML

Formal specification for Java

30

JML

• Formal specification language for Java

Properties can be specified in Design-By-Contract style,

using pre/postconditions and object invariants

NB by default, in JML invariants are object invariants, not loop

invariants.

• Various tools to check JML specifications by eg

– runtime checking

– program verification

to make JML easy to use

• JML annotations are added as special Java comments, between
/*@ .. @*/ or after //@

• JML specs can be in .java files, or in separate .jml files

• Properties specified using Java syntax, extended with some

operators

\old(), \result, \forall, \exists, ==> , ..

and some keywords

requires, ensures, invariant,

31

32

Example JML

public class ChipKnip{

private int balance;

//@ invariant 0 <= balance && balance < 500;

//@ requires amount >= 0;

//@ ensures balance <= \old(balance);

//@ signals (BankException) balance == \old(balance);

public debit(int amount) {

if (amount > balance) {

throw (new BankException("No way"));}

balance = balance – amount;

}

JML basics

• preconditions requires

• postconditions ensures

• exceptional postconditions signals

• (object) invariants invariant

– must be established by constructors

– must be preserved by methods

• ie. assuming invariant holds in pre-state,

it must hold in the post-state

33

34

Exceptional postconditions: signals

//@ requires ….

//@ ensures)…

//@ signals (BankException) balance == \old(balance);

public debit(int amount) throws BankException {

if (amount > balance) {

throw (new BankException("No way"));}

balance = balance – amount;

}

But you can ignore this for the practical exercise! There we will always

prove that no exceptions can be thrown.

JML convention: a method may only throw exceptions that are explicitly

listed in the throws clause. (Java allows implicit Runtime- excptions, eg

Nullpointer- and ArrayIndexOutofBound; JML does not!)

35

non_null

• Lots of invariants and preconditions are about reference not
being null, eg

int[] a; //@ invariant a != null;

• Therefore there is a shorthand

/*@ non_null @*/ int[] a;

• But, as most references are non-null, some JML tools adopt this

as default, so that only nullable fields, arguments and return

types need to be annotated, eg

/*@ nullable @*/ int[] b;

• We could also use JSR308 Java tags for this

@Nullable int[] b;

36

Defaults specs and joining specs

• Default pre- and postconditions
//@ requires true;

//@ ensures true;

can be omitted

• //@ requires P

//@ requires Q

means the same as
//@ requires P && Q;

but the former may allow tools to give more precise feedback,
namely on whether P or Q is not satisfied

What can you do with this?

• Documentation/specification

– explicitly record detailed design decisions & document

assumptions (and hence obligations!)

– precise, unambiguous documentation

• parsed & type checked

• Use tools for

– runtime assertion checking

• eg when testing code

– compile time program analysis

• up to full formal program verification

37

38

assert and loop_invariant

Inside method bodies, JML allows

• assertions

/*@ assert (\forall int i; 0<= i && i< a.length;

a[i] != null);

@*/

• loop invariants

/*@ loop_invariant 0<= n && n < a.length &

(\forall int i; 0<= i & i < n;

a[i] != null);

@*/

• Program verification tools, such as ESC/Java2, KeY, Krakatoa,
... can do program verification of JML-annotated Java code

There is a limit to what fully automated tools, such as
ESC/Java2, can verify

eg. they won't be able to prove Fermat's Last theorem

• So far, only really feasible for small(ish) programs

– incl. realistic Java Card smart card applications

• In addition to doing the verification, which is a lot of work, a
bottleneck is expressing the security property you want to verify

39

40

JML for security

JML can be used to specify for instance

1. which – if any - exceptions can be thrown
incorrectly/not handling errors common source of security problems

2. security-critical invariants to be preserved
even when exceptions occur

3. assumptions on input the application relies on

4. any property expressible by security automaton

Simply trying to verify that a program throws no exceptions – or just

no Nullpointer-exceptions - will expose many (implicit)

invariants and assumptions on input

Related work

• Spec# for C#

by Rustan Leino & co at Microsoft Research

The back-end of this system also used for Hyper-V verification

• SparkAda for Ada

by Praxis High Integrity System

• ACSL for C

used in the Frama-C toolset

https://www.youtube.com/watch?v=J_xgbO5-32k

Some industrial usage, also/esp. for safety-critical software (notably

in avionics) rather than security-critical software

41

