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Overview

• Program Verification using Verification Condition Generators

• JML – a formal specification language for Java

Used for the program verification exercise

2



Program verification

• Formally proving (in the mathematical/logical sense) that a 

program satisfies some property

– eg that it does not crash, always terminates, never terminates, 

meets some functional specification, meets some security 

requirement, etc

– for all possible executions: ie all possible inputs and all possible 

scheduling of parallel threads.

• NB in industry, the term verification is used for testing

but testing provides only weaker guarantees

– because testing will only try some executions

– except in rare case where you can do exhaustive testing

• Formal verification provides the highest level of assurance that 

code is correct & secure

– provided… you can formally verify what it means for the 

code to be secure
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Example software verification for security: Hyper-V

Microsoft Hyper-V Hypervisor

• thin software layer that turns an x64 processor into multiple, 

isolated virtual x64 processor   

• 100 Kloc of C and 5 Kloc of assembly

Verified using VCC tool, that turns code & specifications into 

verification conditions for theorem prover Z3

Info on VCC     

http://research.microsoft.com/en-us/projects/vcc/

Video presentation on VCC

http://channel9.msdn.com/posts/Peli/Michal-Moskal-and-The-Verified-C-Compiler/
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Example: seL4 microkernel

• microkernel – OS kernel that is kept to minimum code size

– in effort to reduce TCB

• seL4 is  8,700 lines of C code and 600 lines of assembly

• Verified using interactive theorem prover Isabelle/HOL                         

in L4.verified project at NICTA   http://ts.data61.csiro.au/projects/TS/l4.verified  

• Steps in the verification process

• Developing abstract, executable specification in Haskell

• Proving that C & machine code implementation behaves 

identical to (technically – simulates) this Haskell prototype

• Proof size 200,000 lines of proof scripts

• Verification effort 11 person-year
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Example verification for security: miTLS & HACL* 

• miTLS is fully verified TLS 1.3 implementation

• Implementations in 

• functional language F#

• ML-like functional language F*

https://mitls.org

• HACL* is a formally verified cryptographic library in F*

• can be compiled down to C

https://github.com/project-everest/hacl-star
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What do we need for program verification?

1. a formal semantics of the programming language

2. a specification language to express properties 

3. a logic to reason about programs and specifications

– aka a program logic

4. a verification tool to support all this

These topics are investigation in the field of field of formal methods
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What to verify?  Example

For the program

...   

x[4] = false;

...

we might want to verify that here x is not  null and 4 is within the 

array bounds (and that x is a Boolean array)

• Proving absence of runtime exceptions (or, in an unsafe 

language like C, memory-safety, or more generally, the 

absence of undefined behavior) is a great bottom-line 

specification to start verification!

• Typing is a simple form of program verification, for a limited and 
relatively weak class of properties, eg “x is a byte array”

A type checker can be regarded as an automated program 

verifier for this class of properties.
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How to specify what we want to verify?

A common way to write we want to verify is using assertions, ie 
properties that hold at specific program points

...

// assert x != NULL && x.length > 4;

x[4] = false;

...

Assertions written as annotations in code are also useful for 

testing, and for generating bug reports.

For methods or procedures, we can give pre- and post-conditions
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How to verify?

Is the assertion below always true?

...

if (x < y) { int z; z = y; y = x; x = z;}

// assert y <= x

How do your verify this?

• You follow all paths in the control flow graph, and check that for 

each path the property holds using normal logical reasoning

Ways to formalize this reasoning process

• compute verification conditions using weakest precondition 

calculation (or strongest postcondition ~)

• use symbolic execution to obtain these verification conditions
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Complication 1 : cycles

Is the assertion below always true?

...

int i = x-y;

while (i > 0) { y++;

i--;

}

// assert y >= x

We can’t follow all paths through the control flow graph, as the 

graph contains a cycle.

We need a loop invariant.
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Complication 1 : cycles

Is the assertion below always true?

...

int i = x-y; // so y+i == x

while (i > 0) { y++; // now y+i == x+1

i--; // now y+i == x

}

// now i <= 0 (because we exited the while loop)

// and y+i == x (because it is a loop invariant) 

//   and therefore y >= x

Once we realise that y+i == x is a loop invariant, we can split 

the graph in a finite number of segments, and check that each 
segments meets the specification
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Complication 2 : modularity & the heap

Programming languages offer procedures or methods for 

modularity. This complicates reasoning.

...

x = 5;

p(); 

// assert x == 5

Is the assertion always true?
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Complication 2 : modularity & the heap

If x is on the stack, the assertion is always true

proc m() {

int x;

x = 5;

p(); 

// assert x == 5

}

because x is out of scope for p() 

• assuming that we are in a memory-safe language:

if p contains buffer overflows, pointer arithmetic, … 

all bets are off!
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Complication 2 : modularity & the heap

If x is on the heap, things become tricky

• even in a safe programming language!

In Java, will the assertion below always hold?

x = 5;

o.p(); 

// assert x == 5 
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Complication 2 : modularity & the heap

class A {

static int x = 12;  // ie a class field

public void m() {

x = 5;

o.p(); 

// assert x == 5 

}

...

Is the assert always true?

No, because o.p()might change A.x
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Complication 2 : modularity & the heap

class A {

int x = 12;  

public void m() {

x = 5;

o.p(); 

// assert x == 5 

}

...

Is the assert always true?

No, because e.g.

• o could be aliased to this and o.p()could change x

• o could have a reference to this and then change x            

by invoking a method or assignment to x if it is not private
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Complication 3

...

x = 5;

// assert x == 5

Is the assertion always true?
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Complication 3: concurrency & the heap

...

x = 5;

// assert x == 5

Is the assertion always true?

No, not if there is another thread running that may also be 
accessing x

The problem, and possible solutions, are very similar to the 

problem of modular reasoning about procedures/methods.

Solutions include separation logic, implicit dynamic frames, or 

ownership

Newer programming languages such as Rust might be better 

suited for reasoning about concurrency
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Program Verification 

using 

Verification Condition Generation
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Program Verification using VCGen

One of the standard approaches for program verification:

using Verification Condition Generator (VCGen):

1. Program is annotated with properties (the specification)

2. Verification Condition Generator produces a set of logical

properties, the so-called verification conditions

3. If these verification conditions are true, the annotations are 

correct – ie the program satisfies the specification
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Example verification using VCGen

//@ requires true;

//@ ensures \result > 5;

public int example(int j)

{

if (j < 8) {

int i = 2;

while (j < 6*i){

j = j + i; 

}

}

return j;

}

These annotations give a 

pre- and postcondition that 

form the  specification:

on any input, this method will 

return a result greater than 5

• is this specification always met?

• how do you know this?

• could an automated tool   

reproduce your reasoning?
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Verification using VCGen

(i) program as graph

//@ ensures \result > 5;

public int example(int j)

{

if (j < 8) {

int i = 2;

while (j < 6*i){

j = j + i; 

}

}

return j;

}

start

j=j+i

int i=2

return j

end

j<6*i

!(j<8)

j<8

!(j<6*i) while(j<6*i)

if(j<8)
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Verification using VCGen

(ii) add assertions

//@ ensures \result > 5;

public int example(int j)

{

if (j < 8) {

int i = 2;

/*@ loop_invariant 

i==2; 

@*/

while (j < 6*i){

j = j + i; 

}

}

return j;

}

start

j=j+i

int i=2

return j

end

j<6*i

!(j<8)

j<8

!(j<6*i) while(j<6*i)

if(j<8)

Post: \result > 5

Pre: true

Loop inv: i==2

end

while(j<6*i)

start
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Verification using VCGen 

(iii) compute VCs & check

start

j=j+i

int i=2

return j

end

j<6*i

!(j<8)

j<8

!(j<6*i) while(j<6*i)

if(j<8)

Compute WP: 
j > 5

Post:

\result > 5

Pre: true

Loop inv: i==2

Compute WP: 
i==2

Compute WP: 
true

Compute WP: 
true

return j

j=j+i

int i=2

if(j<8)

verification condition:

i==2 && !(j<6*i) ==> j>5

verification condition:

true ==> true

verification condition:

i==2 && j<6*i ==> i==2
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Verification condition generation

Given a postcondition and loop invariants

• compute a assertion Ps for every state s

based on assertions Ps’  of the states s’ reachable from s

– key idea: Ps is the weakest predicate such that if it hold in state s, 

and the program goes to state s’ then Ps’  will hold in that state s’

• all that remains to be verified

– Pre  P0

the precondition specified in the program implies the assertion 

computed for the initial state

– Loops  Ps

each loop assertion specified in the program implies the assertion 

computed for that state
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“Opposite” approach: 

forward instead of backwards
Instead of working backwards from the postcondition of the final 

state, you can work forward from the precondition in the initial state:

you then compute strongest postconditions 

instead of weakest preconditions

This is very similar to symbolic execution of a program.
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Tricky issues in program verification

Whatever the approach, the bottlenecks in program verification 

remain…

1. pointers  / references & the heap

Reasoning about data on the heap is difficult.

Even in a language with automatic memory management, 

such as Java or C#, we still have the complication of 

aliasing

2. concurrency aka multi-threading



JML

Formal specification for Java
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JML

• Formal specification language for Java

Properties can be specified in Design-By-Contract style, 

using pre/postconditions and object invariants

NB by default, in JML invariants are object invariants, not loop

invariants.

• Various tools to check JML specifications by eg

– runtime checking

– program verification



to make JML easy to use

• JML annotations are added as special Java comments, between 
/*@ .. @*/ or after //@

• JML specs can be in .java files, or in separate .jml files

• Properties specified using Java syntax, extended with some 

operators

\old( ), \result, \forall, \exists, ==> , ..

and some keywords

requires, ensures, invariant, ....
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Example JML

public class ChipKnip{

private int balance; 

//@ invariant 0 <= balance && balance < 500;

//@ requires amount >= 0;

//@ ensures balance <= \old(balance);

//@ signals (BankException) balance == \old(balance);

public debit(int amount) { 

if (amount > balance) { 

throw (new BankException("No way"));} 

balance = balance – amount;

}



JML basics

• preconditions  requires

• postconditions ensures

• exceptional postconditions signals

• (object) invariants invariant

– must be established by constructors

– must be preserved by methods

• ie. assuming invariant holds in pre-state,

it must hold in the post-state
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Exceptional postconditions: signals

//@ requires ….

//@ ensures)… 

//@ signals (BankException) balance == \old(balance);

public debit(int amount) throws BankException { 

if (amount > balance) { 

throw (new BankException("No way"));} 

balance = balance – amount;

}

But you can ignore this for the practical exercise! There we will always 

prove that no exceptions can be thrown. 

JML convention: a method may only throw exceptions that are explicitly 

listed in the throws clause. (Java allows implicit Runtime- excptions, eg

Nullpointer- and ArrayIndexOutofBound; JML does not!)
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non_null

• Lots of invariants and preconditions are about reference not 
being null, eg

int[] a; //@ invariant a != null;

• Therefore there is a shorthand

/*@ non_null @*/ int[] a; 

• But, as most references are non-null, some JML tools adopt this 

as default, so that only nullable fields, arguments and return 

types need to be annotated, eg

/*@ nullable @*/ int[] b; 

• We could also use JSR308 Java tags for this

@Nullable int[] b;
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Defaults specs and joining specs

• Default pre- and postconditions
//@ requires true;

//@ ensures true;

can be omitted

• //@ requires P

//@ requires Q

means the same as
//@ requires P && Q;

but the former may allow tools to give more precise feedback, 
namely on whether P or Q is not satisfied



What can you do with this?

• Documentation/specification

– explicitly record detailed design decisions & document 

assumptions (and hence obligations!)

– precise, unambiguous documentation

• parsed & type checked

• Use tools for 

– runtime assertion checking 

• eg when testing code

– compile time program analysis

• up to full formal program verification
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assert and loop_invariant

Inside method bodies, JML allows

• assertions

/*@ assert (\forall int i; 0<= i && i< a.length;

a[i] != null );

@*/

• loop invariants  

/*@ loop_invariant 0<= n && n < a.length &

(\forall int i; 0<= i & i < n;

a[i] != null );

@*/



• Program verification tools, such as ESC/Java2, KeY, Krakatoa, 
... can do program verification of JML-annotated Java code

There is a limit to what fully automated tools, such as 
ESC/Java2, can verify 

eg. they won't be able to prove Fermat's Last theorem

• So far, only really feasible for small(ish) programs

– incl. realistic Java Card smart card applications

• In addition to doing the verification, which is a lot of work, a 
bottleneck is expressing the security property you want to verify
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JML for security

JML can be used to specify for instance                        

1. which – if any - exceptions can be thrown    
incorrectly/not handling errors common source of security problems

2. security-critical invariants to be preserved                                     
even when exceptions occur

3. assumptions on input the application relies on

4. any property expressible by security automaton

Simply trying to verify that a program throws no exceptions – or just 

no Nullpointer-exceptions - will expose many (implicit) 

invariants and assumptions on input



Related work

• Spec# for C# 

by Rustan Leino & co at Microsoft Research

The back-end of this system also used for Hyper-V verification

• SparkAda for Ada 

by Praxis High Integrity System

• ACSL for C

used in the Frama-C toolset

https://www.youtube.com/watch?v=J_xgbO5-32k

Some industrial usage, also/esp. for safety-critical software (notably 

in avionics) rather than security-critical software 

41


