
Improving software security

by

improving input handling

Erik Poll

Digital Security

Radboud University Nijmegen

Fighting input problems

• Most security problems arise due to input

• We can detect input problems with fuzzing

• We can fix input problems with input validation

and input or output sanitisation

• Today: can we prevent input problems, in a more structural way,

by construction?

• by dealing with input handling in a methodological way

2

LangSec
(Language-theoretic Security)

3

LangSec (Language-Theoretic Security)

LangSec takes a systematic look at how to deal with input languages

or formats to avoid typical input security problems

Root causes highlighted by LangSec community

1. Applications have to handle data in many languages & formats

2. These languages are often complex & unclearly defined and
combined

3. The code handles all these languages & formats in sloppy way,

– as the succes of fuzzing demonstrates

– the prevalence of input attacks (path traversals, SQL injection,

XSS, ...) shows

4

Tower of Babel

A typical interaction on the web involves many languages & formats

HTTP(S), HTML5, CSS3, javascript, Flash, cookies & FSOs,

Ajax & XML, ActiveX, jpeg, mpeg, mp4, png, gif, SilverLight,

user names, email addresses, phone numbers,

URLs, X509 certificates, TCP/IP (IPv4 or IPv6), DNS,

file names, directories, OS commands, SQL,

database commands, LDAP, JSP, PHP,

ASCII, Unicode, UTF-8, ...

Some handled by web application & browser,

some others by lower protocol layers or

by external programs & services

5

Input attacks on software

The common pattern in many attacks on software

buffer overflows, format string attacks, integer overflow, OS

command injection, path traversal attacks, SQL injection, HTML

injection, XSS, CSRF, database command injection, database

function injection, PHP file name injection, LDAP injection, ...,

ShellShock, HeartBleed,...

is

1. attacker crafts some malicious input

2. software goes off the rails processing this:

– Sometimes it simply crashes, and attacker can do DoS attack.

– Sometimes, this exposes all sort of unintended functionality to attackers.

Like social engineering or hypnosis as attack vector on humans?

6

Processing input

Processing involves

1) parsing/lexing

2) interpreting/executing

Eg interpreting a string as filename, URL, or email address,

or executing a piece of OS command, javascript, SQL statement

This relies on some language or format

Step 1) above relies on syntax of this language

Step 2) above relies also on semantics of this language

7

Processing input is dangerous!

Different ways for an attacker to abuse input

• wasting resources (e.g. a zip-bomb)

• crashing things (and causing DoS)

• abusing strange functionality that is accidentily exposed

– Existing functionality of say SQL database or the OS, or more

bizarre functionality exposed by say a buffer overflow attack,

– Buggy processing of inputs provides a weird machine that the

attacker can “program” to abuse the system

Garbage In, Garbage Out (GIGO)

becomes

Malicious Garbage In, Security Incident Out

8

Fallacy of classical input validation?

Classical input validation:

filter or encode harmful characters

or, slightly better:

only let through harmless characters

But:

• Which characters are harmful (or required!) depends on the

language or format. You need context to decide which characters

are dangerous.

• Not only presence of funny characters can cause problems,

but als the absence of other characters,

or input fields that are too long or too short, ...

9

Recall: GSM as example complex input language

10

Sample problems (some already mentioned earlier)

• Code Red worm exploiting difference in size (in bytes) between

between char’s and Unicode chararacters

• Exploits with zero-width fields in JPEG images

• Malformed Flash files exploiting flaws in Abode’s flashplayer

• All the GSM problems revealed with fuzzing

• Correctly formatted NFC traffic crashing contactless payment

terminals [MSc thesis Jordi van den Breekel, 2014]

11

Sample problems: Combining languages & formats

X509 certificates involve various languages & formats.

Differences in interpretation caused various security flaws:

• ANS.1 attacks in X509 certificates

A null terminator in ANS.1 BER-encoded string in an CommonName

can cause a CA to emit a certificate for an unauthorized Common

Name.

• Multiple Common Names

allowed in X509, but handled diferently in different browsers

• PKCS#10-tunneled SQL injection

SQL command inside a BMPString, UTF8String or

UniversalString used as PKCS#10 Subject Name

[Dan Kaminsky, Meredith L. Patterson, and Len Sassaman,

PKI Layer Cake: New Collision Attacks Against the Global X.509 Infrastructure]

12

Anti-pattern: shotgun parsers

handwritten code that incrementally parses & interprets input, in a

piecemeal fashion

13

An example shotgun parser

char buf1[MAX_SIZE], buf2[MAX_SIZE];

// make sure url is valid URL and fits in buf1 and buf2:

if (!isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buf1

out = buf1;

do { // skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’);

strcpy(buf2, buf1);

...

14

[Code sample from presentation by Jon Pincus]

loop termination

flaw (for URLs

without /)

caused Blaster

worm

Root causes/Anti-patterns

Obstacles in producing code without input vulnerabilities

1. ad-hoc and imprecise notion of input validity

2. parser differentials

eg web-browsers parsing X509 certificates in different ways

3. mixing input recognition & processing

aka shotgun parsers

4. unchecked development of input languages

ie always adding new features & continuously evolving standards

All this results in weird machines, ie. systems that an attacker can

“program” with malicious input

15

LangSec principles to prevent input problems

No more hand-coded shotgun parsers, but

1. precisely defined input languages

eg with EBNF grammar

2. generated parser

3. complete parsing before processing

So don’t substitute strings & then parse,

but parse & then substitute in parse tree

(eg parameterised query instead of dynamic SQL)

4. keep the input language simple & clear

So that equivalence of parsers is ideally decidable

So that you give minimal processing power to attackers

16

Preventing input problems the LangSec way

17

application
malicious

input

p
a

rs
e

r

LangSec approach:
Simple & clear language spec;

generated parser code;

complete parsing before

processing

Postel’s Law

‘Be liberal in what you expect, be strict in what you send’

• aka Robustness Principle, originates from the RFC for TCP

• In the short run:

a great way to quickly get implementations to work together

• In the long run:

a recipe for lots of security headaches

18

19

20

Weird machine = the strange functionality

accidentality exposed by code that (incorrectly)

processing input

Attackers can program this weird machine with their

malicious input!

Minimise the resources & computing power that input handling gives

to attackers

21

22

No more length fields?

Proponents of LangSec argue against using length fields in data

formats

• Length fields are a common source of trouble

– incorrect length fields often cause buffer overflows

• They also make acceptor equivalence undecidable

– because the resulting language is no longer regular or

context-free

23

NB possible confusion in terminology

• Language-based security

Providing safety/security features at programming language level

Eg memory-safety, type-safety, thread-safety, sandboxing,...

Making programming less error-prone

Here language = programming language

• Language-theoretic security (LangSec)

Making handling input less error-prone

Here language = input language

24

State Machines & State Machine Learning
(another level at which input handling goes wrong)

(another from of fuzzing)

To read: Protocol state machines and session languages, LangSec’15

25

Many procotols involve two levels of languages

1) a language of input messages

or packets

2) a notion of session,

or sequence of messages

How can we develop code for the two levels in a systematic way?

How can we test or fuzz these two levels?

For level 1 we can use fuzzing techniques discussed earlier

For level 2 we can do something different, as we discuss now

Protocols

26

Message Sequence Charts (MSCs)

Typical spec given as Message Sequence Chart or in Alice-Bob style.

NB this oversimplifies because it only specifies one correct run,
the so-called happy flow

27

Protocol state machines

A protocol is typically more complicated than

a simple sequential flow.

A better spec can be given using a

Finite State Machine (FSM)

aka Deterministic Finite Automaton (DFA)

This still oversimplifies: it only describes

happy flows, albeit several ones.

The implementation will have to be

input-enabled

28
SSH transport layer

input enabled state machines

A state machine is input enabled iff

in every state

it is able to receive every message

Often, many messages go to 1) some error state, 2) back to the initial

state, or 3) are ignored

29

input enabling

State machine that is not input-enabled

Input enabled version

Alternative input enabled version

Yet another alternative, with an error state

30

BA C

BA C

A,B,C
A,B

A,C

B,C

BA C

A,B,CA,BA,C

B,C

BA C

A,B,C
A,B

A,CB,C

A,B,C

Typical prose specifications: SSH

“Once a party has sent a SSH_MSG_KEXINIT message for key exchange or
re-exchange, until it has sent a SSH_MSG_NEWKEYS message, it MUST NOT
send any messages other than:

• Transport layer generic messages (1 to 19) (but SSH_MSG_ SERVICE
REQUEST and SSH_MSG_SERVICE_ACCEPT MUST NOT be sent);

• Algorithm negotiation messages (20 to 29) (but further SSH_MSG KEXINIT
messages MUST NOT be sent);

• Specific key exchange method messages (30 to 49).

The provisions of Section 11 apply to unrecognised messages”

In Section 11:

“An implementation MUST respond to all unrecognised messages with an
SSH_MSG_UNIMPLEMENTED. Such messages MUST be otherwise
ignored. Later protocol versions may define other meanings for these
message types.”

Understanding protocol state machine from prose is hard!

31

Typical prose specifications: EMV

Excerpt of the EMV contactless specs

“If the card responds to GPO with SW1 SW2 = x9000 and AIP byte 2 bit 8 set

to b0, and if the reader supports qVSDC and contactless VSDC, then if the

Application Cryptogram (Tag '9F26') is present in the GPO response, then the

reader shall process the transaction as qVSDC, and if Tag '9F26' is not

present, then the reader shall process the transaction as VSDC.”

32

Example security flaws due to broken state machines

CVE-2018-10933 libssh

• libssh versions 0.6 and above have an authentication bypass

vulnerability in the server code. By presenting the server an

SSH2_MSG_USERAUTH_SUCCESS message in place of the

SSH2_MSG_USERAUTH_REQUEST message which the server

would expect to initiate authentication, the attacker could

successfully authentciate without any credentials.

https://www.libssh.org/security/advisories/CVE-2018-10933.txt

33

Example security flaws due to broken state machines

• MIDPSSH

no state machine implemented at all

[Verifying an implementation of SSH, WIST 2007]

• e.dentifier2

strange sequence of USB commands by-passes OK

[Designed to fail: a USB-connected reader for online banking , NordSec 2012

There can also be fingerprinting possibilities due to differences in

implemented protocol state machines, eg in e-passports from

different countries or in TCP implementations on Windows/Linux

34

Extracting protocol state machines from code

We can infer a finite state machine from implementation by black box

testing using state machine inference

• using L* algorithm, as implemented in eg. LearnLib

This is effectively a form of ‘stateful’ fuzzing using a test harness that

sends typical protocol messages.

It can also be regarded as a form of automated reverse engineering

This is a great way to obtain protocol state machine

• without reading specs!

• without reading code!

35

State machine inference, eg using LearnLib tool

Just try out many sequences of inputs, and observe outputs

Suppose input A results in output X

• If second input A results in different output Y

• If second input A results in the same output X

Now try more sequences of inputs with A, B, C, ...

to e.g. infer

The inferred state machine is an under-approximation of real system

36

A/X

A/X

A/X A/Y

B/error

A/X B/Y C/X

A/error A/error

B/error

Case study 1: EMV

• Most banking smartcards implement a variant of EMV

• EMV (Europay-Mastercard-Visa) defines set of protocols

with lots of variants

• Specification in 4 books totalling > 700 pages

• EMV contactless specs: 10 more books, > 1500 pages

37

State machine inference of card

38

State machine inference of card

39

merging arrows

with identical

response

State machine inference of card

40

merging arrows with

same start & end state

We found no bugs, but lots of variety between cards.

[Fides Aarts et al., Formal models of bank cards for free, SECTEST 2013]

41

SecureCode application on Rabobank card

used for internet banking, hence

entering PIN with VERIFY obligatory

Understanding & comparing EMV implementations

Are both implementations correct & secure? And compatible?

Presumably they both pass a Maestro compliance test-suite...

So some paths (and maybe some states) are superfluous?

42

Volksbank Maestro

implementation

Rabobank Maestro

implementation

Using such protocol state diagrams

• Analysing the models by hand, or with model checker, for flaws

• to see if all paths are correct & secure

• Fuzzing or model-based testing

• using the diagram as basis for “deeper” fuzz testing

• eg fuzzing also parameters of commands

• Program verification

• proving that there is no functionality beyond that in the diagram,

which using just testing you can never be sure of

• Using it when doing a manual code review

43

Case study 2: the USB-connected e.dentifier

Can we fuzz

• USB commands

• user actions via keyboard

to automatically reverse engineer

the ABN-AMRO e.dentifier2?

[Arjan Blom et al,

Designed to Fail: a USB-connected reader

for online banking, NORDSEC 2012]

44

Operating the keyboard using

45

46

47

State machines of old vs new e.dentifier2

48

Would you trust this to be secure?

49

More detailed inferred state machine,

using richer input alphabet.

Do you think whoever designed or

implemented this is confident that

this is secure?

Or that all this behaviour is necessary?

Results with learning state machines for e.dentifier2

• Coarse models, with a limited alphabet, can be learnt in a few

hours

– these models are detailed enough to show presence of the known

security flaw in the old e.dentifier, and absence of this flaw in the new

one

• The most detailed models required 8 hours or more

• The complexity of the more detailed models suggest there was

no clear protocol design that was used as the basis for the

implementation

50

[Georg Chalupar et al., Automated Reverse Engineering using Lego, WOOT 2014]

Case study 3: TLS

State machine inferred from NSS implementation

Comforting to see this is so simple!

51

TLS... according to GnuTLS

52

TLS... according to OpenSSL

53

TLS... according to Java Secure Socket Exension

54

Which TLS implementations are correct? or secure?

55

[Joeri de Ruiter et al., Protocol state fuzzing of TLS implementations, Usenix Security 2015]

Results with learning state machines for TLS

• Three new security flaws found, in

– OpenSSL

– GnuTLS

– Java Secure Socket Extension (JSSE)

• One (not security-critical) flaw found in newly proposed reference

implementation nqbs-TLS

• For most TLS implementations, models can be learned within 1

hour

56

Conclusions: protocol state machines

Rigorous & clear specs using protocol state machines can

improve security:

• by avoiding ambiguities

• useful for programmer

• useful for model-based testing

In the absence of state machines in specs, extracting state

machines from code using state machine inference is great for

• security testing & analysis of implementations

• obtaining reference state machines for legacy systems

– without having to read nasty RFCs or other specs

57

model

specs code

implementing

model-based

testing

state machine

inference

The people who write specs, make implementations, or do security

analyses probably all draw state machines on their whiteboards...

But will it they all draw an identical ones?

59

Forwarding flaws

[LangSec 2018]

[Strings considered harmful, Usenix login magazine, 2018]

Two types of input problems

1. Buggy parsing & processing

– Bug in processing input causes application to go of the rails

– Classic example: buffer overflow in a PDF viewer, leading to remote

code execution

This is unintended behaviour, introduced by mistake

2. Flawed forwarding (aka injection attacks)

– Input is forwarded to back-end service/system/API, to cause damage

there

– Classic examples: SQL injection, path traversal, XSS, Word macros

This is intended behaviour of the back-end, introduced

deliberately, but exposed by mistake by the front-end

62

Processing vs Forwarding Flaws

63

(abuse of)

a feature !
Forwarding Flaws

back-end

service

malicious

input

eg SQL

query

application

application
malicious

input

a bug !Processing Flaws

eg buffer overflow

in PDF viewer

More back-ends, more languages, more problems

64

SQL

database
malicious

input

web

application

OS

web

browser

XSS

command

injection

SQL

injection

file

systempath

traversal

format

string attack C library

How & where to tackle input problems?

65

application
malicious

input

Tackling processing flaws

p
a

rs
e

r

back-end

service

malicious

input

application

p
a

rs
e

r

?

?

Tackling forwarding flaws?

Where will this
input end up?

?

?

validation/sanitisation:

filtering and/or escaping?

Which bits
are input?

LangSec approach:
Simple & clear language spec;

generated parser code;

complete parsing before

processing

Anti-patterns

in tackling forwarding flaws

Anti-pattern: string concatenation

• Standard recipe for security disaster:

1. concatenate several pieces of data, some of them user input,

2. pass the result to some API

• Classic example: SQL injection

• Note: string concatenation is inverse of parsing

67

Anti-pattern: strings

The use of strings in itself is already troublesome

– be it char*, char[], String, string, StringBuilder, ...

• Strings are useful, because you use them to represent many

things: eg. name, file name, email address, URL, shell command, bit

of SQL, HTML,…

• This also make strings dangerous:

1. Strings are unstructured & unparsed data, and processing

often involve some interpretation (incl. parsing)

2. The same string may be handled & interpreted in many

– possibly unexpected – ways

3. A string parameter in an API call can – and often does – hide a

very expressive & powerful language

68

Remedies

to tackle forwarding flaws

Types to the rescue!

Remedy: Types (1) to distinguish languages

• Instead of using strings for everything,

use different types to distinguish different kinds of data

Eg different types for HTML, URLs, file names, user names, paths,

…

• Advantages

– Types provide structured data

– No ambiguity about the intended use of data

70

Remedy: Types (2) to distinguish trust levels

• Use information flow types to track the origins of data

and/or to control destinations

– Eg distinguish untrusted user input vs compile-time constants

The two uses of types, to distinguish (1) languages or (2) trust levels,

are orthogonal and can be combined.

71

Example: Trusted Types for DOM Manipulation

DOM-based XSS flaws are proving difficult to root out.

The DOM API is string-based, where strings can be HTML snippets,

pieces of javascript, URLs, …

Google’s Trusted Types initiative [https://github.com/WICG/trusted-types]

replaces string-based DOM API with a typed API

– using TrustedHtml, TrustedUrl, TrustedScriptUrl,

TrustedJavaScript,…

– ‘safe’ APIs for back-ends which auto-escape or reject untrusted

inputs

Now released as a Chrome browser feature

[https://developers.google.com/web/updates/2019/02/trusted-types]

72

Conclusions

• Many security problems arise in handling

– buggy parsing

– buggy protocol state machines

– unintended parsing due to forwarding

Ironically, parsing is a well-understood area of computer science…

• LangSec provides some constructive remedies to tackle this

– Have clear, simple & well-specified input languages

– Generate parser code

– Don’t use strings

– Do use types, to distinguish languages & trust levels

73

input

To read

• Protocol state machines and session languages:

specification, implementation, and security flaws

LangSec’15

• LangSec revisited: input security flaws of the second kind,

LangSec’18

74

