
Software Security

Security Principles

Erik Poll
Digital Security group

Radboud University Nijmegen

Security principles

• Variations of lists of security principles appear in literature

• Security vulnerabilities often exploit violations of these

principles

• Good security solutions & countermeasures often follow

these principles

• NB there is some overlap & some tension between

principles

2

Security principles

• secure the weakest

link

• defence in depth

• least privilige

• minimise attack

surface

• compartementalise

• secure defaults

• keep it simple

• fail securely

• promote privacy

• hiding secrets is hard

• use community

resources

• be reluctant to trust

3

Security principles

These principles can be applied at many levels, eg.

• in source code of a application

• between applications

• at OS (operating system) level

• at network level

• within an organisation

• between organisations

• ...

4

Secure the weakest link

• Spend your efforts on improving the security the weakest

part of a system, as this is where attackers will attack

• NB this requires a good risk analysis

• what are the threats & attacker model ?

• which have the highest risk & impact ?

5

Secure the weakest link

• A web application visible through firewall may be a soft

target

– If so: improve web application security, not the
firewall?

The website has to be visible through the firewall

• Or are attacks on the browser the highest risk?

– If so: improve browser security

• Or are employee’s smartphones a higher risk than

company laptops?

(aka the problem of BYOD – Bring Your Own Device)

6

Practise defence in depth

• Have several layers of security

– two controls are better than one!

– no single point of failure!

• A typical violation:

having a firewall, and only having firewall

– A user bringing in laptop or own device circumvents

firewall; This is an example of enviromental creep

7

Defence in depth example

• have a firewall

and

• secure web application software

and

• run web application with minimal priviliges

8

Defence in depth example

• use OS access control to restrict access to sensitive files

and

• encrypt them

9

Defence in depth example

• prevention

and

• detection

Don’t assume security can be broken;

assume that it will be, and think about detection & reaction

• This typically requires logging

• also: logging in a way that is well-suited to inspection &

analysis

• thinking about how to recovering

• thanks to back-ups

10

Defence in depth: counterexample

• Originally, on UNIX systems, the password file,

/etc/passwd, which contains hashed passwords, was

world readable

• Better

– hash passwords

and

– have tight access control to the file

11

Principle of least privilige

• Be stingy with priviliges

– Only grant permissions that are really needed

– resource permissions (eg memory limits, CPU

priorities) , network permissions, file permissions,

Typical violations

– Logging in as root/administrator

An easy way to temporarily elevate higher privileges
(with sudo on Linux, or ‘Run as administrator’ on

Windows, helps users resist the temptation to not log

in as root

– Device drivers running in kernel mode in some OSs

12

Principle of least privilege

• In organisation

– don’t give everyone access to root passwords

– don’t give everyone administrator rights

• On computer

– run process with minimal set of privileges

– Eg, don’t run web application as root or

administrator

13

Principle of least privilige

• In code

• Minimise visibility

eg use private or protected rather than public

• Expose minimal functionality in interfaces of objects,

classes, packages, applications

14

Principle of least privilige

• for Java application

not the default policy

grant codeBase "file:${{java.ext.dirs}}/*" {

permission java.security.AllPermission;

};

but minimum required

grant codeBase "file:./forum/*" {

permission java.security.FilePermission;

"/home/forumcontent/*","read/write";

};

15

Principle of least privilige

Applying the principle of least privilige is hard in practice!

It requires more work & discipline!

Why?

• Running as root you won’t get complaints about missing
file permissions,

• Users will complain about missing rights, never about
having too much rights

• Compiler will complain about breaking access restrictions
in code, not about access restrictions being too liberal.

– IDE and tools can help here

• …

16

Keep it simple (aka economy of mechanism)

Complexity important cause of security problems

• Complexity leads to mistakes eg incorrect use or insecure
configuration by users and developers

• Complexity leads to unforeseen feature interaction

Aka KISS principle (Keep It Simple & Stupid)

17

Simplicity vs least privilige

NB there is a fundamental conflict between

• principle of least privilege

and

• kiss principle – keep it simple

Why?

• Principle of least privilege requires very fine-grained

control with expressive policies (eg. complex access

control matrix)

• ... which leads to complexity

• ... which people then get wrong

Compartementalisation can provide a solution

using defence in depth

18

Compartementalise

• Access control is most comprehensible, and easiest to

manage, if it is all or nothing for large chunks

(compartments)

• Motivations:

– keeping it simple

– containing attacker in case of failure

• Analogy: compartments on a ship

• Counterexample: OS that crashes if an application crashes

19

Compartementalise examples

• Use different machines for different tasks

• eg run web application on a different machine from

employee salary database

• Use different user accounts on one machine for different

tasks

• unfortunately, security breach under one account may

compromise both, because compartementalisation

provided by typical OSs is poor!

• Partition hard disk and install OS twice

20

Compartementalisation – at OS level

• virtual machines

– eg VMWare, VirtualBox

– very popular these days, but mainly for reasons of

convenience & costs, not security

• operating system hypervisors (true microkernels)

small, lightweight kernel, which partions hard disk &

memory, to concurrently run several copies of the OS, in

different compartments

– SeL4, XEN, HyperV

21

Virtualisation by virtual machine

• We simulate the

hardware in an

OS process

22

process

A

process

B

OS 1

OS 2

Hardware

Hardware

Simulator

Similar to Java VM,

except that we

simulate

the real hardware

(which executes the

normal CPU

instructions) and not

some abstract VM

(which executes

bytecode)

Virtualisation by hypervisor

• We simulate the hardware below the operation system, in

a so-called hypervisor aka micro-kernel

23

process

A

process

B

OS 1 OS 2

Hardware

hypervisor

See http://demo.tudos.org or http://www.osnews.com/story/15814 for a nice demo

Compartementalisation in code

• ie. modularisation

– using objects, classes, packages, etc.

• Restrict sensitive operations to small modules,

with small interfaces

• So you can concentrate efforts on quality of these

modules

• So that only these have to be subjected to code

reviews?

24

Compartmentalisation for web:

CSP (Content Security Policy)

CSP is a form of sandboxing implemented in browser

• A webpage from bank.com could contain HTTP CSP header

Content-Security-Policy:

default-src 'self';

img-src 'self' disney.com

child-src https://youtube.com

script-src self apis.google.com

to only allow

– images from bank.com itself or from disney.com

– embedded frames from youtube, included via https

– scripts from apis.google.com

To allow inline scripts, we’d have to add unsafe inline

25

CSP problems : complexity 

CSP is very complex and therefore error-prone to use

• Typos in a CSP policy may mean that parts are silently ignored

• CSP distinguishes different types of content; if a policy only blocks one type

but not the other, then it can be by-passed

• To help in configuring a policy, CSP can run in report-only mode. The browser

than lets violations pas, but logs them, to report them to the server. Many sites

run CSP in report-only mode without telling the browser to send the logs

anywhere…

• If a CSP policy includes certain rich JavaScript libraries as trusted, it can be

by-passed because the libraries can be abused to execute arbitrary code

[Weichselbaum et al., CSP Is Dead, Long Live CSP! On the Insecurity of Whitelists and the Future of

Content Security Policy, CCS 2016]

[Calzavara et al., Content Security Problems? Evaluating the Effectiveness of Content Security Policy in

the Wild, CSS 2016]

26

Compartmentalisation for web:

Sandboxing for iframes

• HTML5 introduced a sandbox option to restrict what an iframe can do

• Just turning on the sandbox with no further options

<iframe sandbox src="..."> </iframe>

imposes many restrictions, incl.

– no JavaScript can be executed

– pop-up windows are blocked

– sending of forms is blocked

– ...

• These restrictions can be lifted one-by-one, eg

<iframe sandbox allow-scripts allow-forms allow-pop-ups

allow-same-origin src="..."> </ >

• For full list of options see

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe#attr-sandbox

27

Minimise attack surface

Mimimise

• number of open sockets

• number of services

• number of services running by default

• number of services running with high priviliges

• number of dynamic content webpages

• number of accounts with administrator rights

• number of files & directories with weak access control

• ...

For the OS, this is also called OS hardening

This is just another instance of the principle of least privilege.

Making public fields private also minimises the attack
surface (from malicious or buggy code components)

28

Minimise attack surface in time

Examples

• Automatically log off users after n minutes

• Automatically lock screen after n minutes

• Unplug network connection if you don’t use it

• Switch off computer if you don’t use it

• On smartcards, it’s good practice to zero-out arrays that

contains sensitive information (usually, decrypted

information) as soon as it’s no longer needed

29

Counter examples to many of these principles

https://www.wired.com/story/dten-video-conferencing-vulnerabilities/

Counter examples to many of these principles

https://www.wired.com/story/dten-video-conferencing-vulnerabilities/

Fail securely

• Incorrect handling of unexpected errors is a major cause

of security breaches

• Counterexamples:

– fallback to unsafe(r) modes on failure

• sometimes for backward compatibility

• asking user if security settings can be lowered

– crashing on failure, leading to DoS attack

– leaking interesting information for an attacker

• Of course, having exceptions in a programming language

has a big impact

32

Fail securely example

isAdmin = true; // enter Admin mode

try {

something that may throw SomeException

} catch (SomeException ex) {

// should we log?

log.write(ex.toString());

// how should we proceed?

isAdmin = false;

// or should we exit?

}

33

Variants of failing insecurely

• nformation leakage

– information revealed by error message can be useful
for attacker

• ignoring errors

– Easier in a programming language without exceptions!

• eg forgetting to check for -1 return value in C

• misinterpreting errors

• useless errors

– why does strncopy return an error value at all?

• handling wrong exceptions

• handling all exceptions

34

Failing insecurely example

Example code in Local System service in Windows,

which temporarily reduces its access rights

// running with Local System permissions

ImpersonateNamedClient(someUser);

// running with lower access rights of someUser

DeleteFile(fileName);

RevertToSelf();

// become Local System again

What's wrong here ?

• What happens if ImpersonateNamedClient fails?

35

Failing insecurely example

try {... // (1) Load XML file f from disk

... // (2) Use some data from f to get URL

... // (3) get X509 certificate

... // (4) access URL with certificate

} catch (Exception ex) {

....

}

What's probably/possibly wrong here ?

One catch block to handle SecurityException,
XMLException, IOException, FileNotFoundException,
SocketException,

36

Failing insecurely example

try {...

...

} catch (Exception ex) {

// do nothing

}

What's possibly/probably wrong here ?

• empty catch block is suspicious...

• overly broad catch, for all Exceptions, is suspicious

37

38

Error report

of department

online

roostergenerator

Error trace of our department’s online diary

Database error: Invalid SQL: (SELECT
egw_cal_repeats.*,egw_cal.*,cal_start,cal_end,cal_recur_date FROM
egw_cal JOIN egw_cal_dates ON egw_cal.cal_id=egw_cal_dates.cal_id
JOIN egw_cal_user ON egw_cal.cal_id=egw_cal_user.cal_id LEFT JOIN
egw_cal_repeats ON egw_cal.cal_id=egw_cal_repeats.cal_id WHERE
(cal_user_type='u' AND cal_user_id IN (56,-135,-2,-40,-160)) AND
cal_status != 'R' AND 1225062000 < cal_end AND cal_start < 1228082400
AND recur_type IS NULL AND cal_recur_date=0) UNION (SELECT
egw_cal_repeats.*,egw_cal.*,cal_start,cal_end,cal_recur_date FROM
egw_cal JOIN egw_cal_dates ON egw_cal.cal_id=egw_cal_dates.cal_id
JOIN egw_cal_user ON egw_cal.cal_id=egw_cal_user.cal_id LEFT JOIN
egw_cal_repeats ON egw_cal.cal_id=egw_cal_repeats.cal_id WHERE
(cal_user_type='u' AND cal_user_id IN (56,-135,-2,-40,-160)) AND
cal_status != 'R' AND 1225062000 < cal_end AND cal_start < 1228082400
AND cal_recur_date=cal_start) ORDER BY cal_start mysql

Error: 1 (Can't create/write to file '/var/tmp/#sql_322_0.MYI'

File: /vol/www/egw/web-docs/egroupware/calendar/inc/class.socal.inc.php

...

Session halted.

39

It’s hard to keep secrets

• Don’t rely on security by obscurity [Kerckhoffs principle]

• Don’t assume attackers don’t know the application source

code, and can’t reverse-engineer binaries

– Don’t hardcode secrets in code.

– Don’t rely on code obfuscation

• Example

– DVD encryption

– webpages with hidden URLs

– passwords in javascript code – this happens!

• But obscurity can help: it may require extra work that puts

of attackers.
40

Sun tarball problem (1993)

• Every tarball (zip-file) produced on Solaris 2.0 contained
fragments of the password file /etc/password

• How did this happen?

– tar looked up some user info directly prior to

producing tarball:

• password file was loaded in heap memory for this

• this heap memory was then released

– then tar allocated memory for constructing the tarball

• allocated memory was always the memory just

released

• memory not zeroed out on allocation by program or

OS...

• Solution: replacing char *buf

(char*)malloc(BUFSIZE) by char *buf

(char*)calloc(BUFSIZE)
41

Promote privacy

• Privacy of users, but also of systems

• Counterexamples

– > telnet somemachine

Trying 123.1.2.3

Connected to somemachine (123.1.2.3)

Red Hat Linux release 7.0S

Kernel 2.2.16 on an i686

login:

– Smartcard chips still do this

42

Clearly assign responsibilities

At organisational level

• eg. make one person responsible for something rather

than two persons – or a whole group.

At coding level

• make one module/class responsible for input validation,

access control, ...

• for a method

public void process(String str)

is the caller or callee responsible for checking if for

instance

str!=null & !(str.equals(””)) ?

But still practice defence in depth...

43

Identify your assumptions

• Including obvious, implicit assumptions

These may be sources of vulnerability, and may change in
long run, due to function creep

Examples

• assuming that malloc will succeed and won’t return
NULL

• assuming that new SomeObject() won’t throw an
OutOfMemoryException

• assuming that Javascript code won’t try to use all CPU
time

• …

44

Principle of psychological acceptance

• If security mechanism is too cumbersome, users will

switch it off, or find clever ways around it

• User education may improve the situation, but only up to a

point

• How many security pop-ups can we expect the user to
cope with, if any?

45

Don’t mix data & code

This is the cause of many problems, eg

• traditional buffer overflow attacks, which rely on mixing

data and code on the stack

• VB scripts in Office documents

– leads to attacks by hostile .doc or .xls

• javascript in webpages

– leads to XSS (cross site scripting attacks)

• …

Recurring tragedy: data formats tend to grow in expressivity

(and complexity) until it because code.

Of course, in the end it is hard to make any fundamental

distinction about which data can be regarded as “code”

46

Be reluctant to trust

• Understand what you are trusting

• Minimise what you are trusting

ie keep Trusted Computing Base (TCB) as small as
possible.

TCB = part of the system that has to be trusted

NB

• Trust is not a good thing

• ‘Trusted’ is not the same as ‘trustworthy’

• Trust is transitive – hence there often is a trust chain

47

Ken Thompson (Reflections on trusting trust)

Backdoor in UNIX and Trojan in C-compiler revealed during

Turing award lecture

1. backdoor in login.c of UNIX

if (name == "ken") {don't check password;

log in as root}

2. code in C compiler to add backdoor when recompiling

login.c

3. code in C compiler to add code (2 & 3!) when

(re)compiling a compiler

48

Use community resources

Use google, books, webforums, etc. to learn & reuse

• learn about vulnerabilities

– and avoid making the same mistakes

• learn about solutions and countermeasures

for the specific languages and systems that you use

Eg read the IEEE Top 10 Security Design Flaws

49

