
Software Security

Introduction

Erik Poll
Digital Security

Radboud University Nijmegen

Admin

• NB IMC051 (5EC, for TRU/e) vs ISOFSE (6EC)

• All course material will be on

http://www.cs.ru.nl/~erikpoll/ss

but video recordings will be in Brightspace

• Register in Osiris (and hence Brightspace)

– If you cannot, send me an email to get on
my back-up mailing list !

• For TRU/e students: get on the TRU/e mailing list !

https://true-security.nl/admission/

Goals of this course

• How does security typically fail in software?

• Why does software often fail?

ie. what are the underlying root causes?

• What are ways to make software more secure?

incl. principles, methods, tools & technologies

– incl. practical experience with some of these

3

Practicalities: prerequisites

• Introductory security course

• TCB (Trusted Computing Base),

CIA (Confidentiality, Integrity, Availability),

Authentication ...

• Basic programming skills, in particular

– C(++) or assembly/machine code

– eg. malloc(), free(), *(p++), &x

strings in C using char*

– Java or some other typed OO language

– eg. public, final, private, protected,

Exceptions

– bits of PHP and JavaScript

4

Sample C(++) code you will see next week

char* copying_a_string(char* string) {

char* b = malloc(strlen(string));

strcpy(b,a);

free(b);

return(b);

}

int lets_do_pointer_arithmetic(int pin[]) {

int sum = 0;

int *pointer = pin;

for (int i=0; i<4; i++){

sum = sum + *pointer;

pointer++;

}

return sum;

}

5

Sample Java code you will see next month

public int sumOfArray(int[] pin)

throws NullPointerException,

ArrayIndexOutOfBoundsException {

int sum = 0;

for (int i=0; i<4; i++){

sum = sum + a[i];

}

return sum;

}

6

Sample Java OO code you will see next month

final class A implements Serializable {

public final static SOME_CONSTANT 2;

private B b1, b2;

protected A ShallowClone(Object o)

throws ClassCastException {

x = new(A);

x.b1 = ((A) o).b1;

x.b2 = ((A) o).b2;

return x;

}

}

7

implements java.io.Serializable

Literature & other resources

• Slides + reading material available at

http:///www.cs.ru.nl/~erikpoll/ss

• Mandatory reading:

• 2 CyBok book chapters

• my lecture notes

• some articles

I’ll be updating this as we go along

• Some additional optional suggestions

for background reading on website

• Highly recommended: the Risky.Biz podcast

to keep up with weekly security news

8

Practicalities: form & examination

• 2-hrs lecture every week

– read associated papers & ask questions!

• project work

– PREfast for C++ (individual or in pairs)

– group project (with 4 people) on fuzzing

– group project on static analysis with Semmle

– JML program verification for Java (6EC version only)

• written exam

Bonus point rule for project

9

Today

• Organisational stuff

• What is "software security"?

• The problem of software insecurity

• The causes of the problem

• The solution to the problem

• Security concepts

10

Motivation

Quiz

Why can websites, servers, browsers, laptops, mobile
phones, wifi access points, network routers, mobile
phones, cars, pacemakers, the electricity grid, uranium
enrichment facilities, ... be hacked?

Because they contain

When it comes to cyber security

software is not our Achilles heel

but our Achilles body

‘Achilles only had an Achilles heel, I have an entire Achilles body’

- Woody Allen

12

Why a course on software security?

• Software is a MAJOR source of security problems

and plays MAJOR role in providing security

Software is the weakest link in the security chain, with

the possible exception of ‘the human factor’

• Software security does not get much attention

– in other security courses, or

– in programming courses,

or indeed, in much of the security literature!

13

How do computer systems get hacked?

By attacking

• software

• humans

• the interaction between software & humans

• crypto

• hardware

• …

E

r

i

k

P

o

l

l

14

15

We focus on software security, but don’t forget

that security is about, in no particular order,

people (users, employees, sys-admins, programmers,...),

access control, passwords, biometrics, protocols,

policies & their enforcement, monitoring, auditing,

legislation, cryptogaphy, persecution, liability, risk

management, incompetence, confusion, lethargy,

stupidity, mistakes, complexity, software, bugs,

verification, hackers, viruses, hardware, operating

systems, networks, databases, public relations, public

perception, conventions, standards, physical protection,

data protection, ...

Fairy tales

Many discussions of security begin with Alice and Bob

How can Alice communicate securely with Bob,

when Eve can modify or eavesdrop on the communication?

16

Alice Bob

Eve

17

This is an interesting

problem,

but it is not the biggest

problem

Hard reality & the bigger problem

Alice’s computer is communicating with another computer

How to prevent Alice’s computer from getting hacked,

when it communicates with some other computer?

Or how to detect this? And then react ?

Solving the 1st problem - securing the communication - does not help!

18sws1

Alice’s

computer

possibly malicious

input

The problem

25th January 2003, 5:29 AM

20

25th January 2003, 6:00 AM

21

Slammer Worm

22

From The Spread of the Sapphire/Slammer Worm, by David Moore et al.

Security problems nowadays

To get an impression of the problem, have a look at

US-CERT bulletins

http://www.us-cert.gov/ncas

CVE (Common Vulnerability Enumeration)

https://cve.mitre.org/cve/

NIST’s vulnerability database

https://nvd.nist.gov/vuln/search

Or subscribe to CVE twitter feed

https://twitter.com/cvenew

23

Changing nature of attackers

Traditionally, hackers were amateurs motivated by ‘fun’

• publishing attacks for the prestige

Nowadays hackers are professional

• attackers go underground

• zero-days are worth good money

• main categories of attackers

• (organized) criminals
with lots of money and (hired) expertise

Ransomware & bitcoin as important game changers

• state actors:
with even more money & in-house expertise

24

Current prices for 0days

Current prices for 0days

Software (in)security: crucial facts

• There are no silver bullets!

Crypto or special security features do not magically solve

all problems

– software security ≠ security software

– “if you think your problem can be solved by cryptography,

you do not understand cryptography and you do not

understand your problem” [Bruce Schneier]

• Security is emergent property of entire system

– just like quality

• (Non-functional) security aspects should be

integral part of the design, right from the start

Root causes

Quick audience polls

• Did you ever take a course on C(++) programming ?

• Were you taught C(++) as a first programming language?

• Did this these courses

• warn about buffer overflows?

• explain how to avoid them?

Major causes of problems are

• lack of awareness

• lack of knowledge

• irresponsible teaching of dangerous programming

languages

29

Quick audience poll

• Did you ever build a web-application?

– in which programming languages?

• Do you know the secure way of doing a SQL query in this
language (to prevent SQL injection)?

Major causes of problems are

• lack of awareness

• lack of knowledge

30

1. Security is always a secondary concern

• Security is always a secondary concern

– primary goal of software is to provide functionality &

services;

– managing associated risks is a derived/secondary

concern

• There is often a trade-off/conflict between

– security

– functionality & convenience

where security typically looses out

31

Functionality vs security

• Functionality is about what software should do,

security is (also) about what it should not do

Unless you think like an attacker,
you will be unaware of any potential threats

32

Functionality vs security: Lost battles?

• operating systems (OSs)

– with huge OS, with huge attack surface

• programming languages

– with easy to use, efficient, but very insecure and error-

prone mechanisms

• web browsers

– with JavaScript, plug-ins for Flash & Java, access to

microphone, web cam, location, …

• email clients

– which automatically cope with all sorts of formats &

attachments

33

Functionality vs security : PHP

"After writing PHP forum software for three years now,

I've come to the conclusion that it is basically impossible

for normal programmers to write secure PHP code.

It takes far too much effort. PHP's raison d'etre is that it

is simple to pick up and make it do something useful.

There needs to be a major push ... to make it safe for the

likely level of programmers - newbies.

Newbies have zero chance of writing secure software

unless their language is safe. ... "

[Source http://www.greebo.cnet/?p=320]

34

2. Weakness in depth

input languages, for

interpretable or executable input, eg

pathnames, XML, JSON, jpeg, mpeg, xls, pdf...

programming languages

35

hardware (incl network card & peripherals)

application

operating system

webbrowser
with plugins platform

eg Java or .NET

system APIs

middleware

libraries SQL

data

base

MALICIOUS

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

2. Weakness in depth

Software

• runs on a huge, complicated infrastructure

– HW, OS, platforms, web browser, lots of libraries & APIs, ...

• is built using complicated languages

– programming languages

and input languages (SQL, HTML, XML, mp4, …)

• using various tools

– compilers, IDEs, pre-processors, dynamic code downloads

All of these may have security holes, or may make the

introduction of security holes very easy & likely

36

Recap

Problems are due to

• lack of awareness

– of threats, but also of what should be protected

• lack of knowledge

– of potential security problems, but also of solutions

• people choosing functionality over security

• compounded by complexity

– software written in complicated languages, using large APIs ,

and running on huge infrastructure

37

Types of software security problems

Flaws vs vulnerabilities

Terminology can be very confused & confusing:

security weakness, flaw, vulnerability, bug, error, coding defect, ..

Important distinction:

1. security weaknesses / flaws:

things that are wrong or could be better

2. security vulnerabilities

flaws that can actually be exploited by an attacker

This requires flaw to be

- accessible: attacker has to be able to get at it

- exploitable: attacker has to be able to do some damage with it

Eg by turning off Wifi and BlueTooth,

many security vulnerabilities become flaws

39

Typical software security flaws

40

Flaws found in Microsoft's first security bug fix month (2002)

37%

20%

26%

17%
0%

buffer overflow

input validation

code defect

design defect

crypto

Other useful distinctions

1. design flaws

2. implementation flaws aka bug aka code-level defects

introduced during coding

Overall consensus:
coding bugs & design flaws equally common

Vulnerabilities also arise on other levels

3. configuration flaws

4. unforeseen consequences of the intended functionality

• eg. spam

• not a bug, but a feature!

41

Types of implemention aka coding flaws

2a. flaws that can be understood looking at the program itself

eg. simple typos, confusing two program variables, off-by-one

error in array access, errors in the program logic,...

2b. (common) problems in the interaction with the

underlying platform or other systems and services, eg

– buffer overflows in C(++) code

– SQL injection, XSS, CSRF,.... in web-applications

– Deserialisation attacks in many programming languages

– ...

42

Bug vs features, yet again

Coding flaws can be

1. bugs

• eg buffer overflow, as discussed next week

2. (abuse of) features

• eg SQL injection

• unintended access to features

• interaction / combination of features

43

The dismal state of software security

The bad news

people keep making the same mistakes

The good news

people keep making the same mistakes

…… so we can do something about it!

“Every upside has its downside” [Johan Cruijff]

44

Spot the (security) flaws!

int balance;

void decrease(int amount)

{ if (balance <= amount)

{ balance = balance – amount; }

else { printf(“Insufficient funds\n”); }

}

void increase(int amount)

{ balance = balance + amount;

}

45

<= should be >=

what if this sum is
too large for an int?

what if amount

is negative?

Different kinds of implementation flaws

1. Lack of input validation

Maybe this is a design flaw? We could

decide not use signed integers..

Root cause: implicit assumption

2. Logic error

3. Problem in interaction with underlying

platform

‘Lower level’ than the flaws above

Root cause: broken abstraction

46

<= should be >=

what if amount

is negative?

what if sum is too
large for a 64 bit int?

Security in the

Software Development Life Cycle

(SDLC)

[Material cover in CyBok chapter on Secure Software Lifecycle

by Williams, see course web page]

How to improve software insecurity?

• We know how to do this!

• Knowledge about standard mistakes is crucial in

preventing them

– These depends on the programming language, the

“platform” (OS, database systems, web-application

framework,…), and the type of application

– There is lots of info available on this now

• But this is not enough: security to be taken into account

from the start, throughout the software development life

cycle

– several ideas & methodologies to do this

48

Security in Software Development Lifecycle

49

Requirements

and use cases

Design Coding Testing

Security

Requirements

Threat

Modelling

Abuse

Cases

Risk
Analysis

Security

tests
Static

Analysis

Pen

testing

Security
incidents

Deployment

Training

Software Development Life Cycle

Evolution of Security Measures

Security-by-Design

Privacy-by -Design

Patch

Management

Coding

guidelines

Shifting left

Organisations always begin tackling security at the end of

the SDLC, and then slowly evolve to tackle it earlier

For example

1. first, do nothing

– some problems may happen & then you patch

2. then, implement support for regular patching

3. then, pre-emptively have products pen-tested

– eg. hire pen-testers, set up bug bounty program, ...

4. then, use static analysis tools when coding

5. then, train your programmers to know about common problems

6. then, think of abuse cases, and develop security tests for them

7. then, start thinking about security before you even start

development

DAST, SAST

Security people keep inventing trendy new acronyms

• DAST

– Dynamic Application Security Testing

– ie. testing

• SAST

– Static Application Security Testing

– ie. static analysis

• RASP

– Run-time Application Security Protection

– ie. monitoring

Security in the Software Development Life Cycle

52

[Source: Gary McGraw, Software security, Security & Privacy Magazine,

IEEE, Vol 2, No. 2, pp. 80-83, 2004.]

McGraw’s Touchpoints

Security in the Software Development Life Cycle

53

McGraw’s Touchpoints

[book: Software Security: building security in, Gary McGraw, 2006]

Methodologies for security in SDLC

Common/best practices, with methods for assessments and

roadmaps for improvement

• Microsoft SDL

• OpenSAMM Software Assurance Maturity Model

http://opensamm.org

• OWASP CLASP, Touchpoints, …

54

OpenSAMM’s 4 business functions

and 12 security practices

55

Microsoft’s SDL Optimisation Model

BSIMM (Building Security In Maturity Model)

57

Based on data collected from large enterprises

See https://www.bsimm.com/framework/

Framework to make compare your SSI (Software Security

Initiative) with that of other companies

BSIMM: comparing your security maturity

daa

Threat modelling

Crucial first step in any security discussion!

1. what are your security requirements?

– Not just thinking about Confidentiality, Integrity and

Availability, but also about Authentication, and not just

Prevention but also about Detection and Reaction

2. what is your attacker model?

– attack surface

– attacker’s motivations & capabilities

– What is the TCB (Trusted Computing Base) ?

– What are your security assumptions ?

Any discussion of security without understanding

these issues is meaningless

For you to do

• To read: CyBok chapter on Secure Software Lifecycle

by Laurie Williams, 2019

• To do: check out recent US-CERT bulletins & CVEs

• Send me an email if you are not (yet) in Brightspace

60

Fundamental security concepts

NB I assume you know all this stuff;

if you don’t, read up on it!

• “Is this system secure?”

• “This system is secure”

Why are this question and this claim meaningless?

You have to say

• what it means for the system to be secure:

the security requirements

• against which attackers it has to be secure:

the attacker model

Threat Modelling

Any discussion of security must start with inventory of

1. The stakeholders & their assets, esp. the crown jewels

1. The attacker model aka threat modelling

• What is the attack surface?

• What are the attack vectors the attacker can use?

• What are the capabilities & resources of the attacker?

script kiddies, criminals, insiders, APTs, … ?

• Possibly also: What are the motives of the attacker?

• For detailed analysis for whole IT infrastructure of an

organisation you can use MITRE’s ATT&CK framework

Any discussion of security without understanding these

issues is meaningless
63

Security objectives

• Confidentiality unauthorised users cannot read information

• Integrity unauthorised users cannot alter information

• Authentication knowing who/what you are interacting with

• Availability authorised users can access information

In Dutch: BIV = Beschikbaarheid, Integriteit, Vertrouwelijkheid

• Non-repudiation for accountability

users cannot deny actions

• Privacy

• Anonimity

• …

64

Integrity vs Confidentiality

Integrity is nearly always way more important than

confidentiality

Eg think of

– your bank account information

– your medical records

– all the software you use, incl. the OS

65

Threats vs security requirements

Sometimes it is easier to think in terms of threats than in
terms of security requirements, eg

• information disclosure

– confidentiality

• tampering with information

– integrity

• denial-of-service (DoS)

– availability

• spoofing

– authentication

• unauthorised access, elevation of privilege attacks

– access control

66

Trusted Computing Base (TCB)

TCB is the collection of software and hardware

that we have to trust for our security

If any part of the TCB is compromised, we’re screwed.

The attacker model and the TCB are complementary.

• We want the TCB to be as small as possible

– Unfortunately, typically the TCB is huge, as it include the

operating system, lots of third-party libraries downloaded

over the internet, the compiler, the IDE, ...

• Trust is bad; we want to minimize trust

– being trusted ≠ being trustworthy

• The TCB for different security properties can be different

– eg. making backups makes the TCB for confidentiality larger,

but the TCB for availability smaller

How to realise security objectives? AAAA

• Authentication

– who are you?

• Access control/Authorisation

– control who is allowed to do what

• Auditing

– check if anything went wrong

• Action

– if so, take action

68

How to realise security objectives?

Other names for the last three A's

• Prevention

• Detection

• Reaction

– to recover assets, repair damage, …

– to persecute (and hence deter) offenders

69

prevention vs detection & reaction

• We naturally think of prevention as way to ensure security,

but detection & response are often much more important

and effective

– Eg. breaking into a house with large windows is trivial;

despite this absence of prevention, detection & reaction still

provides security against burglars

– Most effective security requirement for most persons and

organisations: make good back-ups, so that you can recover

after an attack

• NB don't ever be tempted into thinking that good
prevention makes detection & reaction superfluous.

• Hence important security requirements include

– being able to do monitoring

– having logs for auditing and forensics

– having someone actually inspecting the logs

– ...

70

