Software Security

Introduction

Erik Poll

Digital Security
Radboud University Nijmegen

TR“ e Master in
Cyber Security

Admin

NB IMCO051 (5EC, for TRU/e) vs ISOFSE (6EC)

All course material will be on
http://Iwww.cs.ru.nl/~erikpoll/ss
but video recordings will be in Brightspace

Register in Osiris (and hence Brightspace)

— Ifyou cannot, send me an email to get on
my back-up mailing list !

For TRU/e students: get on the TRU/e mailing list !
https.//true-security.nl/admission/

Goals of this course

How does security typically fail in software?

Why does software often fail?
ie. what are the underlying root causes?

What are ways to make software more secure?
incl. principles, methods, tools & technologies
- incl. practical experience with some of these

Practicalities: prerequisites

Introductory security course

TCB (Trusted Computing Base),
CIA (Confidentiality, Integrity, Availability),
Authentication ...

Basic programming skills, in particular
- C(++) or assembly/machine code
- €g. malloc(), free(), *(pt+), &x
strings in C using char¥*
- Java or some other typed OO language

- eg. public, final, private, protected,
Exceptions

- bits of PHP and JavaScript

Sample C(++) code you will see next week

char* copying a string(char* string) {
char* b = malloc(strlen(string)) ;
strcpy(b,a);
free (b) ;
return (b) ;
}
int lets do pointer arithmetic(int pin[]) {
int sum = 0;
int *pointer = pin;
for (int 1=0; i<4; i++){
sum = sum + *pointer;
pointer++;

}

return sum;

Sample Java code you will see next month

public int sumOfArray(int[] pin)
throws NullPointerException,
ArrayIndexOutOfBoundsException {
int sum = 0;
for (int i=0; i<4; i++){
sum = sum + a[i];
}

return sum;

Sample Java OO code you will see next month

final class A implements Serializable ({
public final static SOME CONSTANT 2;
private B bl, b2;

protected A ShallowClone (Object o)
throws ClassCastException {
X = new(A);
x.bl = ((A) o0).bl;
x.b2 = ((A) o0).b2;

return x;

Literature & other resources

Slides + reading material available at
http:/llwww.cs.ru.nl/~erikpoll/ss
Mandatory reading:
- 2 CyBok book chapters
- my lecture notes
- some articles
I’ll be updating this as we go along

Some additional optional suggestions
for background reading on website

Highly recommended: the Risky.Biz podcast
to keep up with weekly security news

RISKY.BIZ

It's a jungle out there

Practicalities: form & examination

2-hrs lecture every week
- read associated papers & ask questions!

project work
- PREfast for C++ (individual or in pairs)
- group project (with 4 people) on fuzzing
- group project on static analysis with Semmle
- JML program verification for Java (6EC version only)

written exam

Bonus point rule for project

Today

» Organisational stuff

- Whatis "software security™?

- The problem of software insecurity

- The causes of the problem
- The solution to the problem
- Security concepts

10

Motivation

Quiz

Why can websites, servers, browsers, laptops, mobile
phones, wifi access points, network routers, mobile
phones, cars, pacemakers, the electricity grid, uranium
enrichment facilities, ... be hacked?

Because they contain ﬁﬂfﬂWﬁmﬁ

When it comes to cyber security
software is not our Achilles heel
but our Achilles body

‘Achilles only had an Achilles heel, | have an entire Achilles body’
- Woody Allen

12

Why a course on software security?

Software is a MAJOR source of security problems
and plays MAJOR role in providing security

Software is the weakest link in the security chain, with
the possible exception of ‘the human factor’

Software security does not get much attention
- in other security courses, or
- in programming courses,

or indeed, in much of the security literature!

13

How do computer systems get hacked?

By attacking

software

humans Q%%

the interaction between software & humans

crypto

hardware

14

We focus on software security, but don’t forget
that security is about, in no particular order,

people (users, employees, sys-admins, programmers,...),
access control, passwords, biometrics, protocols,
policies & their enforcement, monitoring, auditing,
legislation, cryptogaphy, persecution, liability, risk
management, incompetence, confusion, lethargy,
stupidity, mistakes, complexity, software, bugs,
verification, hackers, viruses, hardware, operating
systems, networks, databases, public relations, public
perception, conventions, standards, physical protection,

data protection, ...

15

Fairy tales

Many discussions of security begin with Alice and Bob

How can Alice communicate securely with Bob,
when Eve can modify or eavesdrop on the communication?

16

This is an interesting
problem,
but it is not the biggest
problem

17

Hard reality & the bigger problem

Alice’s computer is communicating with another computer

possibly malicious

il)

How to prevent Alice’s computer from getting hacked,

when it communicates with some other computer?
Or how to detect this? And then react ?

Solving the 1st problem - securing the communication - does not help!

18

The problem

25t January 2003, 5:29 AM

20

25t January 2003, 6:00 AM

21

Slammer Worm

From The Spread of the Sapphire/Slammer Worm, by David Moore et al.

22

Security problems nowadays

To get an impression of the problem, have a look at

US-CERT bulletins
http://Iwww.us-cert.gov/ncas

CVE (Common Vulnerability Enumeration)
https://cve.mitre.org/cve/

NIST’s vulnerability database
https://Invd.nist.gov/vuln/search

Or subscribe to CVE twitter feed

https://twitter.com/cvenew

23

Changing nature of attackers

Traditionally, hackers were amateurs motivated by ‘fun’
publishing attacks for the prestige

Nowadays hackers are professional
attackers go underground
zero-days are worth good money
main categories of attackers

(organized) criminals
with lots of money and (hired) expertise
Ransomware & bitcoin as important game changers

state actors:
with even more money & in-house expertise

24

Current prices for Odays

ZERODIUM Payouts for Mobiles’ wm N

Up to Android FCP
$2,500,000 Zero Click

FCP: Full Chain with Persistence - 05 e
RCE: Remote Code Execution I Android 1002 -
LPE: Local Privilege Escalation H Any OS5 . _
Upto SBX: Sandbox Escape or Bypass i0S FCP
$2,000,000 Zero Click
105
2.0 | .
WhatsApp iMessage
Up to : [+
RCE+LPE RCE+LPE
$1,500,000 Zero Click Zero Click
10 Androkd
2004 N
Up to WhatsApp SMS/MMS
$1,000,000 RCE+LPE RCE+LPE
10 fAndrokd 105 /Andrakd
3001 N[2005 2008 2007 N [2008 2,008 W 200 b |
Up to Parsiziencs WeChat i ; FE Messenger Signal Telegram Email App
$500,000 - RCE+LPE : RCE+LPE RCE+LPE RCE+LPE RCE+LPE
105 JArdrolkd 10% /Androld 108 JAndrokd 105 /Androld 10 fAndrold
500 ~ GO0 2am b EIE h | 4004 b |
Up to Baseband Media Files Documents Chrome RCE Safari RCE
$200,000 RCE+LPE Kernel /Root RCE+LPE RCE+LPE wfo SBX wiio SBX
10 fAndrold 105 JAndrold 10/ Androld 10S JAndrokd
B0 b |
Up to Signing WiFi RCE Informaticn [k]ASLR
$100,000 RCE via Mith Disclosure Bypass

105/ ARdrold 10S JAndrokd 105 /Androld 0% JAndrokd 105 /Androld

* All payouts are subject to change or cancellation without notica. All trademarks are the property of their respective owners. 2018/ 08 @ zerodium.com

Up to
$1,000,000

Up to
$500,000

Up to
$250,000

Up to
$200,000

Up to
$100,000

Up to
$80,000

Up to
$50,000

Up to
$10,000

* All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners.

Current prices for Odays

ZERODIUM Payouts for Desktops/Servers’

RCE: Remote Code Execution
LPE: Local Privilege Escalation
I Linux/BSD SBX: Sandbox Escape or Bypass
VME:Virtual Machine Escape

BO02 ~

BO01 |

VMware ESXi [Thunderbird
VME RCE

Win,/Linux

002 ~

Safari
RCE+LPE

N Windows
 macOs

m Any OS

4002

Sandmail
RCE

Edge
RCE+LPE

Win

BOT

WinZip
RCE

TOOE |

vBullatin

RCE

Win RCE

Chrome
RCE+LPE

WinRAR T-Zi Window
LPES/SBX

macOs
LPE/SBX

Roundcube

2019/ © zerodium.com

Software (in)security: crucial facts

« There are no silver bullets!’

Crypto or special security features do not magically solve
all problems

— software security # security software

— “if you think your problem can be solved by cryptography,
you do not understand cryptography and you do not
understand your problem” [Bruce Schneier]

« Security is emergent property of entire system
— just like quality

* (Non-functional) security aspects should be
integral part of the design, right from the start

Root causes

Quick audience polls

« Did you ever take a course on C(++) programming ?
Were you taught C(++) as a first programming language?
Did this these courses
warn about buffer overflows?
explain how to avoid them?

Major causes of problems are
lack of awareness
lack of knowledge

irresponsible teaching of dangerous programming
languages

29

Quick audience poll

« Did you ever build a web-application?
- in which programming languages?

« Do you know the secure way of doing a SQL query in this
language (to prevent SQL injection)?

Major causes of problems are
lack of awareness
lack of knowledge

30

1. Security is always a secondary concern

Security is always a secondary concern

- primary goal of software is to provide functionality &
services;

- managing associated risks is a derived/secondary
concern

There is often a trade-off/conflict between
- security
- functionality & convenience

where security typically looses out

31

Functionality vs security

Functionality is about what software shoul/d do,
security is (also) about what it shou/d not do

Unless you think like an attacker,
you will be unaware of any potential threats

32

Functionality vs security: Lost battles?

operating systems (OSs)
- with huge OS, with huge attack surface
programming languages

- with easy to use, efficient, but very insecure and error-
prone mechanisms

web browsers

- with JavaScript, plug-ins for Flash & Java, access to
microphone, web cam, location, ...

email clients

- which automatically cope with all sorts of formats &
attachments

33

Functionality vs security : PHP

"After writing PHP forum software for three years now,
I've come to the conclusion that it is basically impossible
for normal programmers to write secure PHP code.

It takes far too much effort. PHP's raison d'etre is that it
is simple to pick up and make it do something useful.
There needs to be a major push ... to make it safe for the
likely level of programmers - newbies.

Newbies have zero chance of writing secure software
unless their language is safe. ... ™

[Source http:/lIwww.greebo.cnet/?p=320]

34

2. Weakness in depth

input languages, for
interpretable or executable input, eg
pathnames, XML, JSON, jpeg, mpeg, xlIs, pdf...

MALICIOUS
INPUT

programming languages

Ml
PU

eg Javaor .NET
NPU
operating system m

hardware (incl network card & peripherals)

35

2. Weakness in depth

Software
runs on a huge, complicated infrastructure
- HW, OS, platforms, web browser, lots of libraries & APlIs, ...

is built using complicated languages

- programming languages
and /nput languages (SQL, HTML, XML, mp4, ...)

using various tools
- compilers, IDEs, pre-processors, dynamic code downloads

All of these may have security holes, or may make the
introduction of security holes very easy & likely

36

Recap

Problems are due to
lack of awareness
- of threats, but also of what should be protected

lack of knowledge
- of potential security problems, but also of solutions

people choosing functionality over security

compounded by complexity

- software written in complicated languages, using large APls ,
and running on huge infrastructure

37

Types of software security problems

Flaws vs vulnerabilities

Terminology can be very confused & confusing:
security weakness, flaw, vulnerability, bug, error, coding defect, ..

Important distinction:
1. security weaknesses / flaws:
things that are wrong or could be better
2. security vulnerabilities
flaws that can actually be exploited by an attacker
This requires flaw to be
- accessible: attacker has to be able to get at it
- exploitable: attacker has to be able to do some damage with it

Eg by turning off Wifi and BlueTooth,
many security vulnerabilities become flaws

39

Typical software security flaws
(== N

w MS: “No new code for 5 month”

02.06.2002 - 8:01A
1 7% M EDT

buffer overflow
[] input validation
il code defect
. design defect

37%

crypto

20%

Flaws found in Microsoft's first security bug fix month (2002)

40

Other useful distinctions

1. design flaws

2. implementation flaws aka bug aka code-level defects

introduced during coding

Overall consensus:
coding bugs & design flaws equally common

Vulnerabilities also arise on other levels

3. configuration flaws

4. unforeseen consequences of the /ntended functionality
* eg. spam
* not a bug, but a feature!

41

2a.

2b.

Types of implemention aka coding flaws

flaws that can be understood looking at the program itself

eg. simple typos, confusing two program variables, off-by-one
error in array access, errors in the program logic,...

(common) problems in the interaction with the
underlying platform or other systems and services, eg

— buffer overflows in C(++) code
— SQL injection, XSS, CSRF,.... in web-applications
— Deserialisation attacks in many programming languages

42

Bug vs features, yet again

Coding flaws can be
1. bugs

« eg buffer overflow, as discussed next week
2. (abuse of) features

« eg SQL injection

 unintended access to features

* interaction / combination of features

BUG FEATURE
—

43

The dismal state of software security

The bad news
people keep making the same mistakes

The good news
people keep making the same mistakes

...... so we can do something about it!

“Every upside has its downside” [Johan Cruijff]

44

Spot the (security) flaws!

int balance; <= should be >=

what if amount

void decrease (int / .nount) . .
is negative?

{ if (balance <= amount)
{ balance = balance - amount; }

else { printf(“Insufficient funds\n”); }

void increase (int amount)

{ balance = balance + amount;

}
what if this sum is

too large for an int?

45

Different kinds of implementation flaws

what if amount Lack of input validation

is negative? Maybe this is a design flaw? We could
decide not use signed integers..

Root cause: 'Mﬂn'ﬁ" MEHMFTIQN

<=should be >= 2. Logic error

3. Problem ininteraction with underlying
platform

‘Lower level’ than the flaws above

Root cause: BRQKEN ABﬁTRAF‘TWN

what if sum is too
large for a 64 bit int?

46

Security in the
Software Development Life Cycle

(SDLC)

[Material cover in CyBok chapter on Secure Software Lifecycle
by Williams, see course web page]

How to improve software insecurity?

We know how to do this!

Knowledge about standard mistakes is crucial in
preventing them

— These depends on the programming language, the
“platform” (OS, database systems, web-application
framework,...), and the type of application

— There is lots of info available on this now

But this is not enough: security to be taken into account
from the start, throughout the software development life
cycle

— several ideas & methodologies to do this

48

Security in Software Development Lifecycle

Security-by-Design
Privacy-by -Design S p—
Evolution of Security Measures
Threat i
) Training
Modelllng \ Risk Coding
Analysis guidelines
. Patch

Security Management

Requirements
Abuse Static Security Pen Security
Cases Analysis tests testing /ncidents

I I I I —>
Requirements Design Coding Testing Deployment

and use cases

Software Development Life Cycle

49

Shifting left

Organisations always begin tackling security at the end of
the SDLC, and then slowly evolve to tackle it earlier

For example

1.

@

N o o bk

first, do nothing

— some problems may happen & then you patch

then, implement support for regular patching

then, pre-emptively have products pen-tested

— eg. hire pen-testers, set up bug bounty program, ...

then, use static analysis tools when coding

then, train your programmers to know about common problems
then, think of abuse cases, and develop security tests for them

then, start thinking about security before you even start
development

DAST, SAST

Security people keep inventing trendy new acronyms
« DAST
— Dynamic Application Security Testing
— ie. testing
« SAST
— Static Application Security Testing
— ie. static analysis
- RASP
— Run-time Application Security Protection
— ie. monitoring

Security in the Software Development Life Cycle

McGraw’s Touchpoints

Security External Static Penetration
requirements review analysis testing
(tools)
Abuse Risk Risk-based Risk |
cases analysis security tests analysis Security
\ / \ l \ breaks
Requirements Design Test Code Test Field
and use cases plans results feedback

[Source: Gary McGraw, Software security, Security & Privacy Magazine,
IEEE, Vol 2, No. 2, pp. 80-83, 2004.]

52

Security in the Software Development Life Cycle

McGraw’s Touchpoints

SECURITY EXTERMAL CODE REVIEW PEMNETRATION
RECQUIREMEMNTS REVIEW (ToOoLY) TESTIMNG
ABUSE RISk RISK-BASED RISk SECURITY
CASES AMNALYS|S SECURITY TESTS ANA_LVSIS EIPFFLATIDM!
RECPUIREMENTS ARCHITECTURE TEST PLAMNS CODE TESTY ANMD FEEDBACK FROM, gEE-IL-’wR?-IB&
AMD USE CASES AMND PESIGHN TEST RESULTS THE FIELD

GARY MCGRAl
rTamar J Tl

[book: Software Security: building security in, Gary McGraw, 2006]

53

Methodologies for security in SDLC

Common/best practices, with methods for assessments and
roadmaps for improvement —

THE SECURITY
DEVELOPMENT

LIFECYCLE

« Microsoft SDL

R
L SN

« OpenSAMM Software Assurance Maturity Model
http://lopensamm.org

OPENSAMM

« OWASP CLASP, Touchpoints, ...

54

OpenSAMM’s 4 business functions
and 12 security practices

M. OPENSAMM

SAMM Overview

/| Verification

Deployment

Software
Development

Business Functions

Security Practices

Strategy & Education & Security
Metrics Guidance Requirements

Policy & Threat Secure
Architecture

Compliance Assessment

(] Verinenion

Design Security Environment

Review Testing Hardening
Code Vulnerability Operational
Review Management Enablement

55

Microsoft’s SDL Optimisation Model

The four security maturity levels of the SDL Optimization Model

Standardized | Advanced

Security is

integrated
Customer risk is

controlled

The five capability areas of the software development process

Training, Policy, and Organizational Capabjlities

Requirements and Design i
U» _ :
AL w
— - BT

undardlzed~Mvanoed

' @ e

BSIMM (Building Security In Maturity Model)

Framework to make compare your SS| (Software Security
Initiative) with that of other companies

Governance Intelligence SSDL Touchpoints | Deployment

Strategy and Metrics Architecture Analysis Penetration Testing

Compliance and Policy Code Review Software Environment

Training Security Testing Configuration Management
and Vulnerability Manage-

ment

Based on data collected from large enterprises

See https:/Iwww.bsimm.com/framework/

57

d

BSIMM: comparing your security maturity

Configuration Mgmt. & Vuinerabliity Mgmt.

Software Environment p

Penetration Testing

Stralegy & Metlrics
30—

_ Compliance & Policy

\, Training

Security Testing

Architecture Analysis

+ Attack Models

* Security Features & Design

'Slanduds & Requirements

Threat modelling

Crucial first step in any security discussion!

1. what are your security requirements?

— Not just thinking about Confidentiality, Integrity and
Availability, but also about Authentication, and not just
Prevention but also about Detection and Reaction

2. what is your attacker model?

— attack surface

— attacker’s motivations & capabilities

— Whatis the TCB (Trusted Computing Base) ?
— What are your security assumptions ?

Any discussion of security without understanding
these issues is meaningless

For you to do

To read: CyBok chapter on Secure Software Lifecycle
by Laurie Williams, 2019

To do: check out recent US-CERT bulletins & CVEs

Send me an email if you are not (yet) in Brightspace

60

Fundamental security concepts

NB | assume you know all this stuff;
if you don’t, read up on it!

 “Is this system secure?”
« “This system is secure”

Why are this question and this claim meaningless?

You have to say

 what it means for the system to be secure:
the security requirements

« against which attackers it has to be secure:
the attacker model

Threat Modelling

Any discussion of security must start with inventory of
1. The stakeholders & their assets, esp. the crown jewels

& :]
-‘rﬂ A AR N
5] : 7 !

3 (¢ 3

]
RS
A i
..

-

é*:—"_==%_.é

1. The attacker model aka threat modelling 1
« Whatis the attack surface?
« What are the attack vectors the attacker can use?
« What are the capabilities & resources of the attacker?
script kiddies, criminals, insiders, APTs, ... ?
 Possibly also: What are the motives of the attacker?

* For detailed analysis for whole IT infrastructure of an
organisation you can use MITRE’s ATT&CK framework

Any discussion of security without understanding these
issues is meaningless

63

Security objectives

Confidentiality unauthorised users cannot read information
Integrity unauthorised users cannot a/ter information
Authentication knowing who/what you are interacting with

Availability authorised users can access information
In Dutch: BIV = Beschikbaarheid, Integriteit, Vertrouwelijkheid

Non-repudiation for accountability
users cannot deny actions

Privacy

Anonimity

64

|nteg rity VS Confidentiality

Integrity is nearly always way more important than
confidentiality

Eg think of
- your bank account information
- your medical records
- all the software you use, incl. the OS

65

Threats vs security requirements

Sometimes it is easier to think in terms of threats than in
terms of security requirements, eg

information disclosure
- confidentiality
tampering with information
- integrity
denial-of-service (DoS)
- availability
spoofing
- authentication
unauthorised access, elevation of privilege attacks
- access control

66

Trusted Computing Base (TCB)

TCB is the collection of software and hardware
that we have to trust for our security

If any part of the TCB is compromised, we’re screwed.
The attacker model and the TCB are complementary.

« We want the TCB to be as small as possible

— Unfortunately, typically the TCB is huge, as it include the
operating system, lots of third-party libraries downloaded
over the internet, the compiler, the IDE, ...

. TR“ﬁT is bad; we want to minimize trust
— being TR“ﬁTEP # being trustworthy
« The TCB for different security properties can be different

— eg. making backups makes the TCB for confidentiality larger,
but the TCB for availability smaller

How to realise security objectives? AAAA

Authentication
- who are you?

Access control/Authorisation
- control who is allowed to do what

Auditing
- check if anything went wrong

Action
- if so, take action

68

How to realise security objectives?

Other names for the last three A's
Prevention
* Detection

Reaction
- torecover assets, repair damage, ...
- to persecute (and hence deter) offenders

69

orevention Vs detection & reaction

We naturally think of prevention as way to ensure security,
but detection & response are often much more important
and effective

— Eg. breaking into a house with large windows is trivial,
despite this absence of prevention, detection & reaction still
provides security against burglars

— Most effective security requirement for most persons and
organisations: make good back-ups, so that you can recover
after an attack

NB don't ever be tempted into thinking that good
prevention makes detection & reaction superfluous.
Hence important security requirements include

— being able to do monitoring

— having logs for auditing and forensics

— having someone actually inspecting the logs

70

