
Software Security

Information Flow
(Chapter 5 of the lecture notes)

Erik Poll

Digital Security group

Radboud University Nijmegen

Motivating example

Imagine using a mobile phone app to

1. locate nearest hotel using google

2. book a room with your credit card

Sensitive information?

• location information & credit card no

(Un)wanted information flows?

• location should be leaked to google only

• credit card info should be leaked to hotel only

Such information flow policies are an interesting class of security
policies

2

Motivating example

Suppose that for our mobile phone app we want to enforce

• location should be leaked to google only

• credit card info should be leaked to hotel only

• Can OS access control on the app prevent these flows?

NO! Access control either gives or denies access to some

information or service, but cannot restrict what app does it.

• More generally, could we enforce this at runtime by monitoring
the inputs & outputs of the application?

NO! We would have to track the information inside the app with
dynamic taint tracking.

• Recall PREfast supported static taint tracking – clumsily – also

inside the code

3

Information Flow

• An interesting category of security requirements is about

information flow.

Eg

– no confidential information should leak over network

– no untrusted input from network should leak into database

• Information flow properties can be about confidentiality or

integrity

• Note the difference with access control:

– access control is about access only

(eg for mobile phone app, access to the location data)

– information flow is also about what you do with data
after you accessed it

(eg how you process & forward location data)

4

• Warning: possible exam questions coming up!

Example Information Flow - Confidentiality

String hi; // security label secret

String lo; // security label public

Which program fragments (may) cause problems

if hi has to be kept confidential?

6

5. println(lo);

6. println(hi);

7. readln(lo);

8. readln(hi);

1. hi = lo;

2. lo = hi;

3. lo = "1234";

4. hi = "1234";

Example Information Flow - Confidentiality

String hi; // security label secret

String lo; // security label public

Which program fragments (may) cause problems

if hi has to be kept confidential?

7

5. println(lo)

6. println(hi);

7. readln(lo);

8. readln(hi);

1. hi = lo;

2. lo = hi;

3. lo = "1234";

4. hi = "1234"; ??

Example Information Flow - Integrity

String hi; // high integrity (trusted) data

String lo; // low integrity (untrusted) data

Which program fragments (may) cause problems

if integrity of hi is important ?

8

5. println(lo);

6. println(hi);

7. readln(lo);

8. readln(hi);

1. hi = lo;

2. lo = hi;

3. lo = "1234";

4. hi = "1234";

Example Information Flow - Integrity

String hi; // high integrity (trusted) data

String lo; // low integrity (untrusted) data

Which program fragments (may) cause problems

if integrity of hi is important ?

9

5. println(lo);

6. println(hi);

7. readln(lo);

8. readln(hi);

1. hi = lo;

2. lo = hi;

3. lo = "1234";

4. hi = "1234";

Duality between integrity & confidentiality

Integrity and confidentiality are duals :

if you "flip" everything in a property or example for

confidentiality,

you get a corresponding property or example for integrity

For example

inputs are dangerous for integrity,

outputs are dangerous for confidentiality

10

Information flow

• Information flow properties are about ruling out unwanted

influences/dependencies/interference/observations

• Note the difference between data flow properties and

visibility modifiers (eg public, private) or, more generally,

access control

– it's not (just) about accessing data, but also about what

you do with it

11

Questions

• What do we mean by information flow? (informally)

• How can we specify information flow policies?

• How can we enforce or check them?

– dynamically (runtime)

– statically (compile time) – by type systems

• What is the semantics (ie. meaning) of information flow

formally?

12

Trickier examples for confidentiality

int hi; // security label secret

int lo; // security label public

Which program fragments (may) cause problems for
confidentiality?

1. if (hi > 0) { lo = 99; }

2. if (lo > 0) { hi = 66; }

3. if (hi > 0) { print(lo);}

4. if (lo > 0) { print(hi);}

13

Trickier examples for confidentiality

int hi; // security label secret

int lo; // security label public

Which program fragments (may) cause problems for
confidentiality?

1. if (hi > 0) { lo = 99; }

2. if (lo > 0) { hi = 66; }

3. if (hi > 0) { print(lo);}

4. if (lo > 0) { print(hi);}

14

implicit

aka

indirect flows

indirect vs direct flows

There are (at least) two kinds of information flows

• direct aka explicit flows

by “direct” assignment or leak

eg lo=hi; or println(hi);

• indirect aka implicit flows

by indirect “influence”

eg if (hi > 0} { lo = 99; }

Implicit flows can be partial, ie leak some but not all info

Eg the example above only leaks the sign of hi, not its value.

15

Trickier examples for confidentiality

Example

int hi; // security label secret

int lo; // security label public

Which program fragments (may) cause problems for

confidentiality?

1. while (hi>99) do {....};

2. while (lo>99) do {....};

3. a[hi] = 23; // where a is high/secret

4. a[hi] = 23; // where a is low/public

5. a[lo] = 23; // where a is high/secret

6. a[lo] = 23; // where a is low/public

16

Trickier examples for confidentiality

int hi; // security label secret

int lo; // security label public

1. while (hi>99) do {....};

// timing or termination may reveal if hi > 99

2. while (lo>99) do {....}; // no problem

3. a[hi] = 23; // where a is high/secret

// exception may reveal if hi is negative

4. a[hi] = 23; // where a is low/public

// contents of a may reveal value of hi and, again,
// exception may reveal if hi is negative

5. a[lo] = 23; // where a is high/secret

// exception may reveal the length of a, which may be secret

6. a[lo] = 23; // where a is low/public - no

problem

17

Hidden channels

More subtle forms of indirect information flows can arise via

hidden channel aka covert channels aka side channels

• (non)termination

eg while (hi>99) do {....};

or if (hi=99) then {“loop”} else {“terminate”}

• execution time

eg for (i=0; i<hi; i++) {...};

or if (hi=1234) then {...} else {...}

• exceptions

eg a[i] = 23 may reveal length of a (if i is known),

or leak info about i (if length of a is known),

or reveal if a is null..

18

Hidden channels

• Apart from timing & terminations, there are many more side-

channels:

– noise

– power consumption

– EM radiation – aka TEMPEST attacks

• In the courses Hardware Security and Cryptographic

Engineering you can find out more about hidden channels

• In our lab we have set-ups for

power analysis & EM radiation

How can we statically enforce information

flow policies by means of a type system?

Type-based information flow

Type systems have been proposed as way to restrict

information flow.

• most of the theoretical work considers confidentiality,

but the same works for integrity

Practical problem: often very (too) restrictive, because of

difficulty in ruling out implicit flows

21

Types for information flow (confidentiality)

• We consider a lattice (Dutch: tralie) of different security

levels

• For simplicity, just two levels

– H(igh) or confidential, secret

– L(ow) or public

• Typing judgements e:t

meaning e has type t

• implicitly with respect to a context x1:t1, ... xn:tn that gives

levels of program variables

22

H

L

More complex lattices

23

Secret

Classified

Unclassified

Top Secret

Secret

Secret Syria Secret Libya

Top Secret Libya
Top Secret Syria

Top Secret

Unclassified

NATO classification

24

Secret

Confidential

Restricted

Cosmic

Unclassified

Rules for expressions

e : t means e contains information of level t or lower

• variable x:t if x is a variable of type t

• operations e:t e’:t for some binary operation +

e+e' : t (similar for n-ary)

• subtyping e:t t t'

e:t'

25

Rules for commands

s : ok t means s only writes to level t or higher

• assignment e : t x is a variable of type t

x:=e : ok t

• if-then-else e : t c1 : ok t c2 : ok t

if e then c1 else c2 : ok t

• subtyping c : ok t t t'

c : ok t'

ie. ok t ok t’ iff t t' (anti-monotonicity)

26

Rules for commands

s : ok t means s only writes to level t or higher

• composition c1 : ok t c2 : ok t

c1;c2 : ok t

• while e : t c : ok t

while e do c : ok t

27

Beware

Beware of the confusing difference in directions

e : t means e contains information of level t or lower

s : ok t means s only writes to level t or higher

For people familiar will Bell – LaPadula access control :

there you have the same confusion,

in the “no read up” & “no write down” rules

How can we be sure that such

type systems are “correct”?

Soundness and Completeness

• soundness of the type system:

programs that are well-typed do no leak

• completeness of the type system:

programs that do not leak can be typed

Is the type system on preceding slides

• sound?

• complete?

How can we determine this?

Counterexamples for completeness

It is easy to give examples that are not typable but do not
leak, eg

• if (false) then { lo = hi; }

• lo = hi + 1 – hi;

• lo = hi; lo = 12;

Soundness

• Is this type system sound?

– ie does is prevent the information flows that we want to

prevent

• How do we define what we want to prevent?

• Recall the tricky examples of implicit flows

• This is commonly done using notions of non-interference,

which try to capture the notion of what can be observed

Non-interference gives a precise semantics for what

“information flow” means

32

Soundness wrt non-interference

Definition For memories (or program states) μ and ν,

we write μ ≈L ν iff μ and ν agree on low variables.

Definition (Non-interference)

A program C does not leak information if, for all μ ≈L ν:

if executing C in μ terminates and results in μ',

and executing C in ν terminates and results in ν',

then μ' ≈L ν'

Theorem (Soundness)

if C : ok t then C does not leak information

33

Termination as covert channel?

Definition (Non-interference)

A program C does not leak information if, for all μ ≈L ν:

if executing C in μ terminates and results in μ',

and executing C in ν terminates and results in ν',

then μ' ≈L ν'

Does this rule out (non) termination as hidden channel (as

observation to distinguish two runs)?

Definition (Termination-sensitive non-interference)

A program C does not leak information if, for all μ ≈L ν:

if executing C in μ terminates in μ',

then executing C in ν also terminates, and results in some ν'

with μ' ≈L ν'

34

termination-insensitive

While-rule for termination-sensitive non-interference

The while-rule

e : t c : ok t

while e do c : ok t

does not rule out non-termination as covert channel

A more restrictive rule

e : L c :ok L

while e do c : ok L

does rule this out.

(How? NB this is very restrictive!)

• A similar change needed for in-then-else rule.

35

Other notions of secure information flow

Other definitions of what it means to be secure (in the sense

of non-leaking) are needed if

• if programs can throw exceptions

– exceptions are another covert channel, just like non-

termination

• if programs are multi-threaded or non-determinisitic

– because execution of a program can then result in

several outcomes

• multi-threaded programs are non-deterministic,

because results can depend on scheduling

36

Information flow for non-deterministic programs

Definition (Possibilistic NI)

A non-deterministic program C does not leak information if

for all μ ≈L ν
if executing C in μ terminates in μ',

then executing C in ν can terminate in some ν' with μ'≈L ν'

This still ignores probabilistic information flows, for which one

would take the probability that c terminates in some ν'

with μ' ≈L ν' into account

– At attacker that can run the program multiple times,
might be able to observe something

37

The problem with secure information flow

• Practical problem with secure information flow:

the extreme restrictions it imposes, esp. when it come to

ruling out implicit flows

– Eg no while loop with a high guard

– Note that login program inevitably leaks information

about the password

• For most practical applications, we need a looser notion

of information flow than non-interference

• Some controlled form of declassification

38

Declassification

More permissive forms of information flow can allow

de-classification, eg

• for confidentiality:

– output of encryption operation is labelled as public,

even though it depends on secret data.

• for integrity:

– output of input validation routine may be trusted, even

though it depends on untrusted data

– output of routine that checks digital signature may be

trusted, even though it depends on untrusted data

39

Information Flow in practice- static enforcement

• Static enforcement:
Many code analysis tools perform some information flow
analysis

• Eg to spot SQL injection problems (as eg RIPS does)

• Recall PREfast did this, but only intra-procedural

• NB typically for integrity, not confidentiality

• Often unsound and/or incomplete, as concession to
practicality

• Dynamic enforcement

• Perl has an runtime monitoring of information flow
properties (again for integrity properties) aka tainting

40

Dynamic information flow analysis for exploits

Malware that exploits classic buffer overflows weakness can be
detected using tainting

Approach:
1. taint user input using an extra 65th bit on a 64 bit processor to

mark data as tainted. Or more realistically, a simulator of a
processor.

2. trace this during execution by propagating this bit

3. warn if tainted input ends up on suspicious place

• the instruction register (sign of code injection)

• the program counter (sign of malicious code re-use)

• in a function pointer (possible sign of malicious code re-use)

• ...

This could detect zero-day exploits, but it kills performance.

• The technique has been used to confirm that reported
exploits work.

41

Information Flow in practice

• Pragmatic approaches typically worry less – if at all -
about implicit flows.

• Indeed, are implicit flows an issue for integrity?

– for confidentialy implicit flows can clearly be dangerous,
for integrity this is not so clear

42

Related work: Bell-La Padula

• Classic Bell-La Padula model for access control combines

– Mandatory Access control (MAC)

– Multi-Level Security (MLS)

and protects information flow between files by the rules

1. no read up

2. no write down

• Note the similarity with our typing rules, but the rules are for

processes accessing files, instead of programs accessing

variables, and enforced at runtime instead of compile time

• Bell-LaPaluda was developed in the 70s for access control in

military applications

• The dual Biba model has been proposed for integrity

43

Summary

• What is information flow (informally)?

explicit flows , implicit flows, covert channels

• How can we statically control information flow,

using type systems?

• How can we formally define what information flow is?

non-interference,

termination-sensitive or termination-insensitive

You can read all this in Chapter 5 of the lecture notes

• Next week: static information flow analysis for Android

using extension of Java

44

Possible exam questions

• Explaining if there is unwanted information for integrity or

confidentiality in example programs

(like those on slides 5, 7, 12, 15)

• Giving and/or motivating a typing rule for information flow

typing (like on slides 23-25 or 33), for termination-

sensitive or insensitive

• Giving and/or explaining the definition of

non-interference, for integrity or confidentiality

(but not the possibilistic & probabilistic versions)

