
State machine learning

&

Formal Methods

Erik Poll

Digital Security

Radboud University Nijmegen

State Machine Learning

To read: Protocol state machines and session languages, LangSec’15

2

Stateless vs stateful systems

• Stateless system: giving the same input (again) always results in

the same response

– Eg. opening a.pdf, b.pdf, c.pdf in a PDF viewer

– In other words, the system has no memory/no history

• Stateful system: giving the same input again may result in a

different response

– Eg. withdrawing 100 euros from an ATM

– Processing the input results in a state change of the system

Do the fuzzers you tried work best for stateless or stateful systems?

Stateless

Which systems are harder to test (or fuzz): stateless or stateful systems?

Stateful, because we can not just try different inputs,

but also different sequences of inputs

3

Many procotols are stateful and then involve two levels of languages

1) a language of input messages

or packets

2) a notion of session,

or sequence of messages

Bugs can arise on both levels!

How can we develop code for the two levels in a systematic way?

How can we test or fuzz these two levels?

For level 1 we can use fuzzing techniques discussed earlier

For level 2 we can do something different, as we discuss now

Protocols

4

Specification with Message Sequence Charts (MSCs)

Eg for SSH

Typical protocol spec given as Message Sequence Chart or in Alice-Bob style.

NB oversimplifies because it only specifies one correct run, the happy flow

5

Protocol state machines

Most protocols allow more than just one

specific happy flow described by an MSC

A better spec can be given using a

Finite State Machine (FSM)

aka Deterministic Finite Automaton (DFA)

This still oversimplifies:

it still only describes happy flows,

albeit several instead of just one

Any implementation of the protocol

will have to be input-enabled

6
SSH transport layer

input enabled state machines

A state machine is input enabled iff

in every state

it is able to receive every message

Often, many messages go to

1) some error state,

2) back to the initial state, or

3) are ignored

7

input enabling

State machine that is not input-enabled

Input enabled version

Alternative input enabled version

Yet another alternative, with an error state

8

BA C

BA C

A,B,C
A,B

A,C

B,C

BA C

A,B,CA,BA,C

B,C

BA C

A,B,C
A,B

A,CB,C

A,B,C

Typical prose specifications: SSH  [RFCs 4251-4254]

“Once a party has sent a SSH_MSG_KEXINIT message for key exchange or
re-exchange, until it has sent a SSH_MSG_NEWKEYS message, it MUST NOT
send any messages other than:

• Transport layer generic messages (1 to 19) (but SSH_MSG_ SERVICE
REQUEST and SSH_MSG_SERVICE_ACCEPT MUST NOT be sent);

• Algorithm negotiation messages (20 to 29) (but further SSH_MSG KEXINIT
messages MUST NOT be sent);

• Specific key exchange method messages (30 to 49).”

“The provisions of Section 11 apply to unrecognised messages”

In Section 11:

“An implementation MUST respond to all unrecognised messages with an
SSH_MSG_UNIMPLEMENTED. Such messages MUST be otherwise
ignored. Later protocol versions may define other meanings for these
message types.”

Understanding protocol state machine from prose is hard!

9

Example security flaw due to flawed state machine

CVE-2018-10933

libssh versions 0.6 and above have an authentication bypass

vulnerability in the server code. By presenting the server an

SSH2_MSG_USERAUTH_SUCCESS message in place of the

SSH2_MSG_USERAUTH_REQUEST message which the server

would expect to initiate authentication, the attacker could

successfully authenticate without any credentials.

https://www.libssh.org/security/advisories/CVE-2018-10933.txt

10

More example security flaws due to flawed state machines

• MIDPSSH

no state machine implemented at all

[Verifying an implementation of SSH, WIST 2007]

• e.dentifier2

strange sequence of USB commands by-passes OK

[Designed to fail: a USB-connected reader for online banking , NordSec 2012]

There can also be fingerprinting possibilities due to differences in

implemented protocol state machines, eg in e-passports from

different countries or in TCP implementations on Windows/Linux

11

Extracting protocol state machines from code

We can infer finite state machines from implementations by black box

testing using state machine inference/learning

• using L* algorithm, as implemented in eg. LearnLib

This is effectively a form of ‘stateful’ fuzzing using a test harness that

sends typical protocol messages.

For fuzzing we send strange inputs,

for state machine learning we send strange sequences of normal inputs

It can also be regarded as a form of automated reverse engineering

It is a great way to obtain protocol state machines

• without reading specs!

• without reading code!

12

State machine inference, eg using LearnLib

Just try out many sequences of inputs, and observe outputs

Suppose input A results in output X

• If second input A results in different output Y

• If second input A results in the same output X

Now try more sequences of inputs with A, B, C, ...

to e.g. infer

The inferred state machine is an under-approximation of real system

13

A/X

A/X

A/X A/Y

B/error

A/X B/Y C/X

A/error A/error

B/error

Case study 1: EMV

• Most banking smartcards implement a variant of EMV

• EMV (Europay-Mastercard-Visa) defines set of protocols

with lots of variants

• Specs controlled by which is owned by

• Specification in 4 books totalling > 700 pages

• EMV contactless specs: 10 more books, > 1500 pages

14

http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%E3%82%AB%E3%83%BC%E3%83%89%E3%81%8C%E3%81%94%E5%88%A9%E7%94%A8%E3%81%84%E3%81%9F%E3%81%A0%E3%81%91%E3%82%8B%E3%82%88%E3%81%86%E3%81%AB%E3%81%AA%E3%82%8A%E3%81%BE%E3%81%97%E3%81%9F%EF%BC%81-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images?q%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%E3%82%AB%E3%83%BC%E3%83%89%E3%81%8C%E3%81%94%E5%88%A9%E7%94%A8%E3%81%84%E3%81%9F%E3%81%A0%E3%81%91%E3%82%8B%E3%82%88%E3%81%86%E3%81%AB%E3%81%AA%E3%82%8A%E3%81%BE%E3%81%97%E3%81%9F%EF%BC%81-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images?q%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images?q%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images?q%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images?q%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images?q%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images?q%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images?q%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1

State machine inference of card

15

State machine inference of card

16

merging arrows

with identical

response

State machine inference of card

17

merging arrows with

same start & end state

We found no bugs, but lots of variety between cards.

[Fides Aarts et al., Formal models of bank cards for free, SECTEST 2013]

18

SecureCode application on Rabobank card

used for internet banking, hence

entering PIN with VERIFY obligatory

Understanding & comparing EMV implementations

Are both implementations correct & secure? And compatible?

Presumably they both pass a Maestro compliance test-suite...

So some paths (and maybe some states) are superfluous?

19

Volksbank Maestro

implementation

Rabobank Maestro

implementation

Case study 2: the USB-connected e.dentifier

Can we use state machine learning with

• USB commands

• user actions via keyboard

to obtain the state machine

of the ABN-AMRO e.dentifier2?

Earlier manual analysis

revealed the USB connection

has a flaw

20

GENERATE AC f(number, text)

(Manually) reverse-engineered Protocol

PC reader card

display:‘enter pin’

display:‘text’

user enters PIN

user presses OK

ASK-PIN

PIN-OK

SIGN (number, text)

USER-OK

COMPLETE

g(cryptogram)

cryptogram

PIN

OK

GENERATE AC f(number, text)

Spot the defect!

PC reader card

display:‘enter pin’

display:‘text’

user enters PIN

user presses OK

ASK-PIN

PIN-OK

SIGN (number, text)

USER-OK

COMPLETE

g(cryptogram)

cryptogram

PIN

OK

GENERATE AC f(number, text)

Attack!

PC reader card

display:‘enter pin’

display:‘text’

user enters PIN

user presses OK

ASK-PIN

PIN-OK

SIGN (number, text)

USER-OK

g(cryptogram)

cryptogram

PIN

OK

Operating the keyboard using

24

25

26

https://www.youtube.com/watch?v=hyQubPvAyq4

State machines of old vs new e.dentifier2

27
https://www.youtube.com/watch?v=hyQubPvAyq4

Would you trust this to be secure?

28

More detailed inferred state machine,

using richer input alphabet.

Do you think whoever designed or
implemented this is confident that
this is secure?

Or that all this behaviour is necessary?

Results with learning state machines for e.dentifier2

• Coarse models, with a limited input alphabet, can be learnt in a few

hours

– detailed enough to show presence of the known security flaw in the old

e.dentifier, and absence of this flaw in the new one

• The most detailed models required 8 hours or more

• The complexity of the obtained models suggest there was

no clear protocol design as the basis for the implementation

29

[Georg Chalupar et al., Automated Reverse Engineering using Lego, WOOT 2014]

https://www.youtube.com/watch?v=hyQubPvAyq4

Case study 3: TLS

State machine inferred from NSS implementation

Comforting to see this is so simple!

30

TLS... according to GnuTLS

31

TLS... according to GnuTLS

32

TLS... according to OpenSSL

33

TLS... according to Java Secure Socket Exension

34

Which TLS implementations are correct? or secure?

35

[Joeri de Ruiter et al., Protocol state fuzzing of TLS implementations, Usenix Security 2015]

Results with learning state machines for TLS

• For most TLS implementations, models can be learned within 1

hour

• Three security flaws can be found this way, in

– OpenSSL

– GnuTLS

– Java Secure Socket Extention (JSSE)

• One (not security-critical) flaw found in newly proposed reference

implementation nqbs-TLS

36

People who write specs, or make implementations, or do security

analyses probably all draw state machines on their whiteboards...

But will it they all draw an identical one?

37

Protocol state machines

Rigorous & clear specifications using protocol state machines can

improve security:

• by avoiding ambiguities

• useful for programmer

In spec does not clearly specify a state machines, extracting state

machines from code using state machine learning is great for

• security testing & analysis of implementations

• obtaining reference state machines for legacy systems

38

Uses of protocol state machines

1. Analysing the models by hand, or with model checker, for flaws

• to see if all paths are correct & secure

2. Using model when doing a manual code review

3. Fuzzing or model-based testing

• using the diagram as basis for “deeper” fuzz testing

eg fuzzing also parameters of commands

4. Program verification

• proving that there is no functionality beyond that in the diagram,

which using just testing you can never be sure of

39

The road we followed

model

specs code

implementing

state machine

learning

Ideally specs would include a state machine!

model

specs code

implementing

model-based

testing

including

Or maybe we could

generate code?

Formal methods

43

What are formal methods?

A formal method consists of

• mathematical formalism to describe (aspects of) systems

• associated mathematical or logical techniques to reason about

these models

Example formalisms:

regular expressions, finite state machines (FSMs),

context-free grammars, possibly in ABNF or EBNF notation,

proposition/predicate/temporal logic,

term rewriting systems,

process algebra,

….

44

Different ways to use formal methods

1. Make a formal model of (some aspect of) a system, and then prove

security/correctness properties of that model

• eg. model system components as FSMs and using a model checker to

prove absence of deadlock

• eg. model a security protocol in applied pi-calculus and prove that the

protocol is secure

2. Make a formal model of the programming language, so that you

can reason about arbitrary programs

In principle, formal methods can prove correctness and/or security of

programs, but… in practice two questions remain:

A. Does the model accurately describe reality?

B. What does it mean for the system to be correct or secure?

45

Security protocol verification

Security protocols, such as SSH, TLS, Signal/WhatsApp, EMV, can be

modelled & verified in tools such as Tamarind and ProVerif

• Crypto primitives for hashing and decryption are assumed to be secure

• Tools can prove that private keys do not leak

and the impossibility of replay attacks, Man-in-the-Middle attacks, ..

The ‘Verification of Security Protocols’ course at TUE treats this in detail.

46

Formalisation of EMV in F#

750 pages of prose specification

in 370 lines of F#

(Known) security flaws can be

found automatically by

FS2PV & Proverif

Part of EMV model

// Perform DDA Authentication if requested, otherwise do nothing

let card_dda (channel, atc, (sIC,pIC), nonceC) dda_enabled =

let data = Net.recv channel in

if APDU.get_command data = INTERNAL_AUTHENTICATE then

if dda_enabled then

begin let nonceT = APDU.parse_internal_authenticate data in

let signature = rsa_sign sIC (nonceC, nonceT) in

Net.send channel (APDU.internal_authenticate_response nonceC signature);

Net.recv channel

end

else failwith "DDA not supported by card"

else data

54

Properties checked with ProVerif

1. Sanity checks to ensure absence of deadlock

2. Secrecy of private keys

3. Highest supported card authentication method is used

• eg no fallback to weaker method can be forced

4. ‘transaction security’: if a transaction is completed, then everyone

agrees on the parameters (eg with/without pin, off/online, amount,…)

query evinj:TerminalTransactionFinish(sda,dda,cda,pan,amount,…)

==> evinj:CardTransactionInit(sda,dda,cda,pan,amount,…)

No new attacks found, but most existing attacks inevitably (re)discovered

56

Security protocol verification

Remaining worries?

• Are implementations of the protocol (in C, C++, Java, hardware, …)

identical to this model?

• Doing state machine learning of these implementations can provide some

confidence!

• Are the cryptographic primitives indeed secure?

• Are the implementations of these crypto primitives (in hardware and/or

software secure, esp. against physical side channel attacks?

Topic of ‘Physical attacks on secure systems’ by Lejla Batina & Ileana Buhan next

semester

Verifying properties of SSH implementations

Do SSH implementations conform to requirements stated in the RFC?

To verify this, we

1) learned state machine models for SSH implementations using LearnLib

2) expressed the requirements in temporal logic (LTL)

3) used model-checker NuSMV to verify these LTL properties for these state

machines

[Paul Fiterau-Brostean et al., Model learning and Model Cheking of SSH Implementations, SPIN 2017]

51

Example LTL (Linear Temporal Logic) property of SSH

• RFC 4254 states that “after sending a KEXINIT message,

a party MUST not send another KEXINIT or SR_ACCEPT message,

until it has sent a ReceivedNewKeys message.

• In LTL: G (out=KEXINIT —> X ((out ! = SR_ACCEPT & out ! = KEXINIT)

W receivedNewKeys))

LTL notation: G = Globally, X = neXt W = Weak until

Verifying properties of SSH implementations

52

Model checking results of all inferred models

Program verification

• Formally proving (in the mathematical/logical sense) that a

program satisfies some property

– eg that it does not crash, always terminates, never terminates, meets

some functional specification, meets some security requirement, etc

– for all possible executions: ie all possible inputs and all possible

scheduling of parallel threads.

• NB in industry, the term verification is used for testing

but testing provides only weaker guarantees

– because testing will only try some executions

– except in rare case where you can do exhaustive testing

• Formal verification provides the highest level of assurance that

code is correct & secure

– provided you can specify what it means for the code to be correct &

secure

53

What do we need for program verification?

1. a formal semantics of the programming language

2. a specification language to express properties

3. a logic to reason about programs and specifications

– aka a program logic

4. a verification tool to support all this

54

Verification of Java programs using JML

JML is a formal specification language for Java

– to specify behaviour of Java classes

– to record detailed design decisions

• Used by adding annotations to Java source code for

pre/postconditions and invariants

– aka Design-By-Contract style

• Design goal: meant to be usable by any Java programmer

55

JML formal specification example

public class ePurse{

private int balance;

//@ invariant 0 < balance && balance < 500;

//@ requires amount >= 0;

//@ ensures balance <= \old(balance);

//@ signals (BankException) balance == \old(balance);

public debit(int amount) {

if (amount > balance) {

throw (new BankException("No way"));}

balance = balance – amount;

}
56

JML formal specification example

public class ePurse{

private int balance;

//@ invariant 0 <= balance && balance < 500;

//@ requires amount >= 0;

//@ ensures balance <= \old(balance);

//@ signals (BankException) balance == \old(balance);

public debit(int amount) {

if (amount > balance) {

throw (new BankException("No way"));}

balance = balance – amount;

}
57

This is the kind of flaw program verification will spot!

Program verification: the good & the bad

• Program verification doable for 1000s of lines of code ,

too labour-intensive for millions of lines of code 

• Writing specifications of the APIs used can be the bottleneck 

• Formally specifying what it means for a system to be correct or

correct can be hard 

– But: simply annotating code with the object/class invariants needed to

prevent runtime exceptions is a great start

• Annotations also useful for testing: runtime assertion checking.

Eg JML compiler can translate JML annotations to runtime checks

Advantages: this provides

– a very thorough test oracle for ‘free’

– very precise feedback in case of test failures

58

Program Verification of Hyper-V [2008]

• A hypervisor is a minimal software layer below the OS that turns a

physical processor into multiple, isolated virtual processors

• Microsoft’s Hyper-V hypervisor is 100 Kloc of C and 5 Kloc of

assembly

• Hyper-V was verified using VCC tool for concurrent C, that turns

code & specifications into verification conditions for theorem

prover Z3

59

seL4 microkernel [2009]

• microkernel – OS kernel that is kept to minimum code size,

in effort to reduce TCB

• seL4 is 8,700 lines of C code and 600 lines of assembly

• Verified using interactive theorem prover Isabelle/HOL

in L4.verified project at NICTA

• Steps in the verification process

• Developing abstract, executable specification in Haskell

• Proving that C & machine code implementation behaves identical to

(technically – simulates) this Haskell prototype

• Proof size 200,000 lines of proof scripts

Verification effort 11 person-year

https://trustworthy.systems/projects/seL4-verification/

60

CompCert [2016]

Dilemma: is it better to verify the source code of some program

or the compiled binary?

• Advantage of verifying source code: easier to verify 

• Disadvantage: we have to trust the compiler 

CompCert is C compiler that has been formally verified

• Using the Coq theorem prover

61

miTLS & HACL* [2016 & 2017]

• miTLS is fully verified TLS 1.3 implementation

• Implementations in

• functional language F#

• ML-like functional language F*

https://mitls.org

• HACL* is a formally verified cryptographic library in F*

• can be compiled down to C

https://github.com/project-everest/hacl-star

62

Want to know more about formal methods?

• Robbert Krebbers teaches new course in spring semester:

Program verification with types and logic

https://www.sws.cs.ru.nl/Teaching/ProgramVerification

https://robbertkrebbers.nl

• Freek Verbeek works on verification of binaries

at Open University & VirginiaTech

and has thesis projects in this area

https://www.cs.ru.nl/~freekver

63

