Fuzzing results

Erik Poll

Digital Security group
Radboud University Nijmegen

Fuzzing results

application
stb_image
Freelmage
OpenTTD
flacon
PrusasSlicer
Mplayer
Ristretto, gdkpixbuf
picojpg
libjxI
wavpack
Radar2e
p7zip
Vislt
FFmpeg
MP3 decompression
echoprint codegen
Audiowaveform
gifdec
cmus
PDFio

old version

old version
latest?
latest
latest
latest?
latest
latest?

old version
latest
old version
latest
v2.4
latest?

latest, but 7 yrs old

?
latest

latest

format(s)
PNG, JPEG
JPEG, GIF, WEB, IFF/LBM, TGA
save files??
flac
config file
mp4, mcv
TIFF
JPEG
JPEG XL
WAV, Wave64, CAF, DSDIFF, DSF,...
binaries
7z, zip,tar, gz,bz2
Silo, PNG, ASCII, STL
GIF, PNG
mp3
mp3
mp3, wav, flac, ogg vobis, opus
GIF
mp3, wav,...
PDF

coO N o o1 b W

9

10
11
13
14
15
16
17
18
19
20
21
22
25

application
stb_image
Freelmage
OpenTTD
flacon
PrusaSlicer
Mplayer
Ristretto, gdkpixbuf
picojpg
libjxI
wavpack
Radar2e
p7zip
Vislt
FFmpeg
MP3 decompression
echoprint codegen
Audiowaveform
gifdec
cmus
PDFio

Fuzzing results

afl(++) findings
plenty of problems with & without ASan
plenty of problems with & without ASan
plenty of problems, more hangs without ASan
problems found with & without ASan
problems found without ASan, not with ASan!
hangs found, with and without ASan, no crashes
hangs & crashes without ASan, not with ASan
hangs & crashes, with & without ASan
plenty of crashes, with ASan
crashes and hangs, with & without Asan
afl found crashes, with & without ASan
known CVE found, with & without ASan
afl++ found a hang, afl did not
crash found but it was error message
crashes & hangs, with & without ASan

lots of crashes, with & without ASan
plenty of problems, with & without ASan

new bugs found, faster without ASan!

dumb fuzzers?
Radamsa found one unique crash, an AssertionFailure
Radamsa used as front-end
zuff also found many crashes
zuff just as good, Radamsa better!
Radamsa just as good?
Radamsa also found hangs
Radamsa found nothing
zuff & Radamsa found problems, only with ASan
zuff & Radamsa found nothing?
zuff & Radamsa also found problems
Radamsa found crashes too, with and without ASan

2 hangs with Radamsa
zzuf found no crashes, Radamsa did

zzuf found no crashes, Radamsa did
zuff & Radamsa also found many problems

Radamsa found similar (same?) problems too, but slowse

oo N O oW

9

10
11
13
14
15
16
17
18
19
20
21
22
25

application
stb_image
Freelmage
OpenTTD
flacon
PrusaSlicer
Mplayer
Ristretto, gdkpixbuf
picojpg
libjxI
wavpack
Radar2e
p7zip
Vislt
FFmpeg
MP3 decompression
echoprint codegen
Audiowaveform
gifdec
cmus
PDFio

Fuzzing results

misc
mutated file not displayable in Overleaf
known CVE found, but also another one? 33 different file formats supported!
zuff finished in a few minutes, afl took hours??

most problems found not security vulns, but one SEGF
used tiff dictionary; problematic mutations with huge sizes
bugs found were not security-critical

some flaws were known CVEs

(parts of) UBSan used too
fuzzed the printer too?

1 path only... This program just calculates a hash?

some fixes
had to disable CRC chec
Crashwalk used to analyse bugs

Recurring issues

« afl unique !'= unique
o afl zzzzz....

« Azure:-(?

group 3

Figure 7: id:000036,time:0,0rig:id:004043,sync:jpeg9,src:005204.jpeg

Interestingly enough we had to create a screenshot of the image, since Overleaf (the program
in which we write our report) displayed a white image which might indicate their image library
also doesn’t play well with this kind of input.

Group 5 also fuzzed my printer / PDF viewer

I't was quite difficult to get interesting re using Radamsa. This
was mostly due to the fact that p7zip doesn’ 2
0 if an error is handled by the program. That means that all kinds of er-
rors whether handled by the program or not, return with the same sta-

[o R R PR R | 4 R o N PR P 1 2 P N [NP SR

uve 1o auemprt It. However, as sO ot1ten witn MICFDSUP‘- FH Y URD up
was very unintuitive. It almost seemed as if Microso

“accidentally” sell you a subscription immediately ins 4 of allowing
access to tha trial Rv tha time wa finallv manaaed to claim our free

ralse positives overshadows the true positives found. As both also
slow down the fuzzer, we would not recommend using them.
Lastly, we used CMPLOG and COMPCQV, which are used to im-
prove the fuzzer s ability to explore boolean st:
tures. However, this provided no substantial benefits for our fuzzing
target. Not only did it find less flaws compared to the fuzzer with no
additional instrumentation, it also slowed down the generation of mu-

group 14 - Radare

Unique Crashes — Comparison

30 - — AFL *San
—— AFL Stock ,_,_‘_l'
—— Radamsa *San I

25 4 —— Radamsa Stock

20 ~

15 1

0 10000 20000 30000 40000
seconds

Figure 1: Comparison of unique crashes found over time

group 14 - Radare

Bug class Sub class Sink AFL | AFL* | Radamsa | Radamsa* Reference
Segmentation Fault null deref util.c:76 X X X X Fixed in [9]
null deref elf.c:3818 X X X X Fixed in |9]
null deref pe.c:1067 X X X X Reported in [10]
null deref pe.c:1075 X X Reported in [10]
null deref x509.¢:26 X Reported in [11]
null deref x5009.¢:286 X Reported in [11]
Heap buffer overflow read 1 byte bfile.c:195 X X Cannot repro
read 1 byte bfile.c:199 X X Cannot repro
read 1 byte ne.c:375 X X (not triaged)
read 2 bytes ne.c:83 X X (not triaged)
read 2 bytes ne.c:393 X (not triaged)
read 2 bytes ne.c:394 X (not triaged)
read 2 bytes ne.c:396 X (not triaged)
read 2 bytes ne.c:483 X X (not triaged)
read 8 bytes pkes7.c:651 X X X (not triaged)
read 8 bytes x509.c:190 X (not triaged)
read 40 bytes pe.c:4241 X Reported in [12]
Heap buffer overflow write 1 bytes marshal.c:226 X X Reported in [13]
write 183 bytes memmove X Reported in [14]
write 228 bytes memmove X Reported in [14]
write 5282 bytes memmove X Reported in [14]
write 54 bytes memmove X Reported in [14]
write 61 bytes memmove X Reported in [14]
| Use after free | read 4 bytes | marshal.c:788 | | X] X | Reported in [15] |
Signed integer overflow | 'int’ marshal.c:199 X X X X Solved by |15]
"int’ pe.c:4244 X (not triaged)
'long long int’ bin_elf.inc:634 X (not triaged)
'long long int’ bin_elf.inc:636 X (not triaged)
Invalid bitwise shift exponent too large ne.c:297 X X (not triaged)
exponent too large ne.c:560 X X (not triaged)
negative left shift bin_mz.c:51 X X (not triaged)
negative left shift pe.c:3397 X X (not triaged)
shift exceeds int type pe.c:3397 X X (not triaged)
Alignment problems member access with misaligned address | coff.c:41 X X (not triaged)
load of misaligned address ne.c:396 X X (not triaged)
load of misaligned address bin_pe.c:433 X (not triaged)

Table 2: Flaws found by each fuzzer.

The * indicates the presence of sanitizers

group 16 : Fuzzing PQ candidates?

done 1n general and we would like to continue working in this area and try and
tuzz the NIST post quantum candidates |2| (by the time we came up with this
idea it was too late, but we will perform that as external task).

10

group 21 — GIF decoder

Mutation | Crashes and Inputs
Rate Hangs Found | Processed
0.0001 305 10150
0.001 543 2451
0.01 539 2492
0.1 37 29679

Table 4: Testing different rates for zzuf

AFL

Segmentation faults | 619
Invalid pointers | 27

Double free or corruption 16
Free invalid size 8
Corrupted size §)

zuff Radamsa
12,902 2,209
5,813 208

105 9
1,218 5
9,799 128

Table 7: The different kinds of crashes we found with the different tools

11

