
Software Security

Introduction

Erik Poll
Digital Security

Radboud University Nijmegen

1

Admin

• If anyone thinks they should still do the 5EC version,

contact me asap

• Most course material will be on

http://www.cs.ru.nl/~erikpoll/ss

but some things will be in Brightspace

• Keep track of Brightspace announcements

– If you do not log into Brightspace regularly,

have these announcements forwarded to your email

2

Goals of this course

• How does security typically fail in software?

• Why does software often fail?

What are the underlying root causes?

• What are ways to make software more secure?

incl. principles, methods, tools & technologies

– incl. practical experience with some of these

Focus more on defence than on offense

3

Practicalities: prerequisites

• Introductory security course

• TCB (Trusted Computing Base),

CIA (Confidentiality, Integrity, Availability),

Authentication, ...

• Basic programming skills, in particular

– C(++) or assembly/machine code

– eg. malloc(), free(), *(p++), &x

strings in C using char*

– Java or some other typed OO language

– eg. public, final, private, protected,

Exceptions

– bits of PHP and JavaScript

4

The kind of C(++) code you will see next week

char* copy_and_print(char* string) {

char* b = malloc(strlen(string));

strcpy(b,string); // copy string to b

printf(”The string is %s.”, b);

free(b);

return(b);

}

int sum_using_pointer_arithmetic(int a[]) {

int sum = 0;

int *pointer = a;

for (int i=0; i<4; i++){

sum = sum + *pointer;

pointer++; }

return sum;

}

5

The kind of Java code you will see next month

public int sumOfArray(int[] pin)

throws NullPointerException,

ArrayIndexOutOfBoundsException {

int sum = 0;

for (int i=0; i<4; i++){

sum = sum + a[i];

}

return sum;

}

6

The kind of OO Java code you will see next month

final class A implements Serializable {

public final static int SOME_CONSTANT = 2;

private B b1;

public B b2;

protected A ShallowClone(Object o)

throws ClassCastException {

a = new(A);

x.b1 = ((A) o).b1; // cast o to class A

x.b2 = ((A) o).b2;

return a;

}

}

implements java.io.Serializable

7

Exam material

• Slides + reading material available at

http:///www.cs.ru.nl/~erikpoll/ss

• Mandatory reading:

• 2 CyBok book chapters

• my lecture notes

• some articles

I’ll be updating this as we go along

8

Not exam material

The Risky.Biz podcast to keep up with weekly security news

Join the student CTF group if you’re interested in the

practical side of security: ctf-ru.slack.com

9

Not exam material (yet…)

Next week Thursday:

online presentation by Andrew van der Stock on

The OWASP Top 10 2021

at OWASP Belgium Chapter meeting

See https://owasp.org/www-chapter-belgium/

10

Practicalities: form & examination

• 2-hrs lecture every week

– read associated papers & ask questions!

• project work

– PREfast for C++ (individual or in pairs)

– group project (with 4 people) on fuzzing

– project on static analysis with Semmle (individual or in

pairs)

• written exam

Bonus point for group project, computed as (grade-6)/4

11

Today

• Organisational stuff

• What is "software security"?

• The problem of software insecurity

• The causes of the problem

• The solution to the problem

• Security concepts

12

Motivation

13

Quiz

Why can websites, servers, browsers, laptops, mobile
phones, wifi access points, network routers, mobile
phones, cars, pacemakers, the electricity grid, uranium
enrichment facilities, ... be hacked?

Because they contain

When it comes to cyber security

software is not our Achilles heel

but our Achilles body

‘Achilles only had an Achilles heel, I have an entire Achilles body’

- Woody Allen

14

Why a course on software security?

• Software is a MAJOR source of security problems

and plays MAJOR role in providing security

Software is the weakest link in the security chain, with

the possible exception of ‘the human factor’

• Software security does not get much attention

– in other security courses, or

– in programming courses,

or indeed, in much of the security literature!

15

How do computer systems get hacked?

By attacking

• software

• humans

Or: the interaction between software & humans

• crypto

• hardware

• …

16

Fairy tales

Many discussions about security begin with Alice and Bob

How can Alice communicate securely with Bob,

when Eve can modify or eavesdrop on the communication?

Alice Bob

Eve

17

This is an interesting

problem,

but it is not the biggest

problem

18

The really big problem

Alice & her computer are communicating with another computer

How to prevent Alice’s computer from getting hacked?

Or how to detect this? And then react ?

Solving earlier problem, securing the communication, does not help!

possibly malicious

input

19

The problem

20

25th January 2003, 5:29 AM

21

25th January 2003, 6:00 AM

22

Slammer Worm

From The Spread of the Sapphire/Slammer Worm, by David Moore et al.

23

Security problems nowadays

To get an impression of the problem, have a look at

US-CERT bulletins

https://us-cert.cisa.gov/ncas/bulletins

CVE (Common Vulnerability Enumeration)

https://cve.mitre.org/cve/

NIST’s vulnerability database

https://nvd.nist.gov/vuln/search

Or subscribe to the CVE twitter feed

https://twitter.com/cvenew

24

Changing nature of attackers

Traditionally, hackers were amateurs motivated by ‘fun’

• by script kiddies & more skilled hobbyists

• NB if you like that, join the RU-CTF team!

Nowadays hackers are professional:

• cyber criminals

with lots of money & (hired) expertise

Important game changers: ransomware & bitcoin

• state actors

with even more money & in-house expertise

• hackers for hire

like NSO group, Zerodium, …

25

Prices for 0days

26

Prices for 0days

27

Software security: crucial facts

• There are no silver bullets!

Firewalls, crypto, or special security features do not

magically solve all problems

– “if you think your problem can be solved by cryptography,

you do not understand cryptography and you do not

understand your problem” [Bruce Schneier]

• Security is emergent property of entire system

– like quality

– or maybe: property of the ongoing process?

• Security should be - but hardly ever is - integral

part of the design, right from the start

28

security software ≠ software security

Adding security software can make a system more secure

i.e. software specifically for security, such as

– network-level protection with TLS, IPSEC, firewall, VPN, …

– AV (AntiVirus), WAF (Web Application Firewall)

– access control, with eg 2FA, logging, monitoring, …

– NIDS (Network Intrusion Detection System)

– EDR (Endpoint Detection and Response)

– …

BUT
All software must be secure, not just the security software

• That buffer overflow in your PDF viewer will still kill you…

• Adding security software may add software bugs and make

things less secure:

Check out https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=firewall

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=VPN

29

Root causes

30

Quick audience polls

• Did you ever take a course on C(++) programming ?

• Were you taught C(++) as a first programming language?

• Did this these courses

• warn about buffer overflows?

• explain how to avoid them?

Major causes of problems are

• lack of awareness

• lack of knowledge

• irresponsible teaching of dangerous programming

languages

31

Quick audience poll

• Did you ever build a web-application?

– in which programming languages?

• Do you know the secure way of doing a SQL query in this
language (to prevent SQLi)?

Major causes of problems are

• lack of awareness

• lack of knowledge

32

More root causes

Security is always a secondary concern

– primary goal is to provide functionality & services;

– managing associated risks is a secondary concern

• There is often a trade-off/conflict between

– security

– functionality , convenience , speed , …

where security typically looses out

• Users are likely to complain about missing or broken

functionality, but not about insecurity

33

Functionality vs security: Lost battles?

• Operating systems (OSs)

– with huge OS, with huge attack surface

• Programming languages

– with easy to use, efficient, but very insecure and error-

prone mechanisms

• Web browsers

– with JavaScript and Web APIs to access microphone,

web cam, location, …

• Email clients

– which automatically cope with all sorts of formats &

attachments

34

Functionality vs security : PHP

"After writing PHP forum software for three years now,

I've come to the conclusion that it is basically impossible

for normal programmers to write secure PHP code.

It takes far too much effort.

PHP's raison d'etre is that it is simple to pick up and make

it do something useful. …."

[Source http://www.greebo.cnet/?p=320]

35

More root causes: Weakness in depth

complex input languages, for

interpretable or executable input, eg

pathnames, XML, JSON, jpeg, mpeg, xls, pdf...

programming languages

hardware (incl network card & peripherals)

application

operating system

webbrowser
with plugins platform

eg Java, .NET

or JavaScript

system APIs

middleware

libraries SQL

data

base

MALICIOUS

INPUT
INPUT

INPUT

INPUT
INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

36

Weakness in depth

Software

• runs on a huge, complicated infrastructure

– HW, OS, platforms, web browser, lots of libraries & APIs, ...

• is built using complicated languages

– programming languages

and input languages (SQL, HTML, XML, mp4, …)

• using various tools

– compilers, IDEs, pre-processors, dynamic code downloads

All of these may have security holes, or may make the

introduction of security holes very easy & likely

37

Recap

Problems are due to

• lack of awareness

– of threats, but also of what should be protected

• lack of knowledge

– of potential security problems, but also of solutions

• people choosing functionality over security

• compounded by complexity

– software written in complex languages, using large complex

APIs, and running on complex platforms

38

Types of software security problems

39

Weaknesses vs vulnerabilities

Terminology can be messy & confusing

security weakness, flaw, vulnerability, bug, error, coding defect, ..

Important distinction:

1. (potential) security weaknesses

Things that could go wrong & could be better

2. (real) security vulnerabilities

Flaws that can actually be exploited by an attacker

Requires flaw to be

accessible: attacker has to be able to get at it

exploitable: attacker has to be able to do some damage with it

Eg by turning off Wifi and BlueTooth on my laptop,

many vulnerabilities become weaknesses

40

Typical software security flaws

Flaws found in Microsoft's first security bug fix month (2002)

37%

20%

26%

17%
0%

buffer overflow

input validation

code defect

design defect

crypto

41

‘Levels’ at which security flaws can arise

1. Design flaws

introduced before coding

2. Implementation flaws aka bugs aka code-level defects

introduced during coding

As a rule of thumb, coding & design flaws equally common

Vulnerabilities can also arise on other levels

3. Configuration flaws

4. Unforeseen consequences of the intended functionality

• eg. spam: not enabled by flaws, but by features!

42

Types of implemention flaws

2a. Flaws that can be understood by looking at program itself

Eg. typos, < instead of <= ..., mistake in the program logic with

wrongly nested if-statements, ...

2b. Problems in the interaction with the underlying platform

or other systems and services, eg

– memory corruption in C(++) code

– SQL injection in program that uses an SQL database

– XSS, CSRF, SSI, XXE, in web-applications

– Deserialisation attacks in many programming languages

– ...

43

Bug vs features, yet again

Attacks can not only exploit bugs, but also features

Eg: SQL injection uses a feature of the back-end database

44

The dismal state of software security

The bad news

people keep making the same mistakes

The good news

people keep making the same mistakes

…… so we can do something about it!

“Every upside has its downside” [Johan Cruijff]

45

Spot the security flaws!

int balance;

void decreaseBankBalance(int amount)

{ if (balance <= amount)

{ balance = balance – amount; }

else { println(”Insufficient funds\n”); }

}

void increaseBankBalance(int amount)

{ balance = balance + amount;

}

<= should be >=

what if this sum is
too large for an int?

what if amount

is negative?

46

Different kinds of implementation flaws

1. Lack of input validation

Maybe this is a design flaw? We could

decide not use signed integers..

Root cause: implicit assumption

2. Logic error

3. Problem in interaction with underlying

platform

‘Lower level’ than the flaws above

Root cause: broken abstraction

<= should be >=

what if amount

is negative?

what if sum is too
large for a 64 bit int?

47

Security in the

Software Development Life Cycle

(SDLC)

[Material cover in CyBok chapter on Secure Software Lifecycle

by Laurie Williams, see course web page]

48

How can we make software secure?

We do not know how to do this!

Even if we formally verify software, we may

• miss security properties that need to be verified

• make implicit assumptions

• overlook attack vectors

• …

49

How can we make software more secure?

We do know how to do this!

• Knowledge about standard mistakes is crucial

– These depends on programming language, “platform”,

APIs/technologies used, type of application

– There is LOTS of info available on this nowadays

• But this is not enough: security to be taken into account

from the start, throughout the software development life

cycle

– Several ideas, best practices, methodologies to do this

50

Security in Software Development Lifecycle

Requirements

and use cases

Design Coding Testing

Security

Requirements

Threat

Modelling

Abuse

Cases

Risk
Analysis

Security

tests
Static

Analysis

Pen

testing

Security
incidents

Deployment

Training

Evolution of Security Measures

Security-by-Design

Privacy-by-Design

Patch

Management

System

Coding

guidelines

51

Bug bounty

program

Patch

“Shifting left”

Organisations always begin tackling security at the end of

the SDLC, and then slowly evolve to tackle it earlier

For example

1. first, do nothing

– some problems may happen & then you patch

2. then, implement support for regular patching

3. then, pre-emptively have products pen-tested

– eg. hire pen-testers or set up bug bounty program, ...

4. then, use static analysis tools when coding

5. then, train your programmers to know about common problems

6. then, think of abuse cases, and develop security tests for them

7. then, start thinking about security before you even start

development

52

DAST, SAST, RASP

Security people keep inventing trendy new acronyms

• DAST

– Dynamic Application Security Testing

– ie. testing

• SAST

– Static Application Security Testing

– ie. static analysis

• RASP

– Run-time Application Security Protection

– ie. monitoring

53

Security in the software development life cycle

[Source: Gary McGraw, Software security, Security & Privacy Magazine,

IEEE, Vol 2, No. 2, pp. 80-83, 2004.]

McGraw’s Touchpoints

54

Methodologies for secure software development

• Gary McGraw’s Touchpoints

• Microsoft SDL
with extension for Secure DevOps (DevSecOps)

• Open SAMM (Software Assurance Maturity Model)

• OWASP SAMM

• BSIMM

• Grip op SSD (Secure Software Development)

Ongoing initiative by Dutch government organisations

https://www.cip-overheid.nl/en/category/products/secure-software/

• …

These come with best practices, checklists, methods for

assessments, roadmaps for improvement, …

55

Microsoft’s SDL Optimisation Model

56

OpenSAMM

With 4 business functions and 12 security practices

57

BSIMM (Building Security In Maturity Model)

Based on data collected from large enterprises

https://www.bsimm.com/framework/

Framework to compare your software security efforts with

other organisations

58

BSIMM: comparing your security maturity

59

But first…

60

Crucial first steps in any security discussion!

1. What are your security requirements?

What does it mean for the system to be secure?

2. What is your attacker model?

Against what does the system have to be secure?

– Attack surface / attack vectors

– Attacker’s motivations & capabilities

– What are your security assumptions ?

• Including: what is the TCB (Trusted Computing Base) ?

Any discussion of security without answering these

questions is meaningless

Aka threat modelling using eg Microsoft STRIDE or MITRE ATT&CK

61

Security requirements

a) ‘This application cannot be hacked’

• generic default requirement

• vague & not actionable

b) More specific security requirements

• In terms of Confidentiality, Integrity and Availability (CIA)

• Or, usually better, in terms of Access Control

(i.e. Authentication & Authorisation)

and not just Prevention

but also about Detection and Reaction/Response

62

For you to read & do

1. To read: CyBok chapter on Secure Software Lifecycle
by Laurie Williams

2. To do: check out

a) the CVEs in latest US-CERT bulletin

b) recent CVEs for the web-browser & PDF viewer you
are using

c) how some of the CVSS score was determined for some
of these CVEs

63

