
Software Security

Security Testing

especially

Fuzzing

Erik Poll

Last week: static analysis aka code review tools aka SAST

This week: dynamic analysis aka security testing aka DAST

Focus of this lecture – and group assignment – is on testing C(++) code for

memory corruption

Security in the SDLC

2

The security testing paradox

• Security testing is harder than normal, functional testing

– We have no idea what we are looking for!

A bizarre input may trigger an obscure bug that is exploitable in some

bizarre way, and finding that input with testing is hard

– Normal users are good testers, as they will complain about functional

problems, but they will not complain about many/any security flaws

• Security testing is easier than normal, functional testing

• We can test for some classes of bugs in partly automated way using

fuzzing

• Fuzzing is the great success story in (software) security in the past

decade .

3

Fuzzing group project

• Form a team with 4 students

• Choose an open-source C(++) application that can take input from

the command line in some complex file/input format

– For instance, any graphics library for image manipulation

– Check on http://lcamtuf.coredump.cx if it has already been fuzzed with

afl; if so, you will have to test old release

• Try out fuzzing tools (afl, Radamsa, zuff, …) to look for security

vulnerabilities (esp. memory corruption bugs)

– with/without instrumentation (ASan, MSan, valgrind,…) for additional

checks on memory safety

– Optional variations: investigate bugs, check against known CVEs,

introduce bugs, test older releases, try different settings or seed

inputs, try other fuzzing tools, …

4

Fuzzing group project

1. Coming days/week: pick an application and hand in Brightspace

assignment with application & its input format

• Maybe we’ll have some discussion about suitability & feasibility

2. For the rest of Oct & Nov: spend > 4hrs per week to see how far

you get & collect results in some report

• Good to pick one day to work and/or sync on this with your groups

3. We will discuss & compare experiences at the end

• And maybe along the way

For the fuzzing you can use your university Azure cloud account - and you

own computer, of course.

5

Overview

1. Testing basics

2. Abuse cases & negative tests

3. Fuzzing

a) Dumb fuzzing

b) Mutational Fuzzing

• example: OCPP

c) Generational fuzzing aka grammar-based fuzzing

• example: GSM

d) Whitebox fuzzing with SAGE

• looking at symbolic execution of the code

e) Code coverage guided evolutionary fuzzing with afl

• grey box instead of black box

Beware: terminology for various forms of fuzzing is messy

6

Testing basics

7

SUT, test suite & test oracle

To test a SUT (System Under Test) we need two things

1. test suite, ie. collection of input data

2. test oracle to decide if response is ok or reveals an error

- ie. some way to decide if the SUT behaves as we want

Both defining test suites and test oracles can be a lot of work!

• In the worst case, a test oracle is a long list which for every
individual test case, specifies exactly what should happen

• A simple test oracle: just looking if application doesn’t crash

Moral of the story: crashes are good ! (for testing)

8

Code coverage criteria

Code coverage criteria can measure how good a test suite:

• statement coverage

• branch coverage

Statement coverage does not imply branch coverage; eg for

void f (int x, y) { if (x>0) {y++};

y--; }

Statement coverage needs 1 test case, branch coverage needs 2

• More complex coverage criteria exists, eg MCDC (Modified

condition/decision coverage), commonly used in avionics

Code coverage metrics can also be used to guide test case

generation (as afl does)

Possible perverse effect of coverage criteria

High coverage criteria may discourage defensive programming, eg.

void m(File f){

if <security_check_fails> {log (...);

throw (SecurityException);}

try { <the main part of the method> }

catch (SomeException) { log(...);

<some corrective action>;

throw (SecurityException); }

}

If defensive code, ie. the if- & catch-branches, is hard to trigger in tests,

programmers may be tempted (or forced?) to remove this code to improve

test coverage...

10

Annotations as test oracle

• Annotations, eg SAL annotations of C/C++ code,

can be used as test oracle by doing runtime assertion checking

– So annotations provide a test oracle for free! You can test by

sending random data & checking if annotations are violated

• Information flow policies can also be used as test oracles

– Eg SAL’s Tainted=SA_YES annotations or nicer policy

languages discussed later in this course

But: runtime checking for these require heavy instrumentation of

the code, to trace the origin of data inside the running

application, aka dynamic taint tracking

11

Security testing:

Abuse cases & Negative testing

12

testing vs security testing

Difference in focus

• Normal testing focuses on correct, desired behaviour for sensible

inputs (aka the happy flow), but will include some inputs for

borderline conditions

• Security testing also – especially – looks for wrong, undesired

behaviour for really strange inputs

• Similarly, normal use of a system is more likely to reveal

functional problems than security problems

13

Security testing is HARD

14

space of all possible inputs

normal

inputs
. input that triggers

security bug

.
. .

.. .

. some input

Abuse cases aka negative test cases

• Thinking about abuse cases is a useful way to come up with

security tests

– what would an attacker try to do?

– where could an implementation slip up?

• This gives rise to negative test cases,

i.e. test cases which are supposed to fail

as opposed to positive test cases, which are meant to succeed

15

Abuse cases – early in the SDCL

16

iOS goto fail SSL bug

...

if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

err = sslRawVerify(...);

. . .

17

Negative test cases for flawed certificate chains

• David Wheeler's 'The Apple goto fail vulnerability: lessons learned'

gives a good discussion of this bug & ways to prevent it, incl. the

need for negative test cases

http://www.dwheeler.com/essays/apple-goto-fail.html

• The FrankenCert test suite provides (broken) certificate chains to test for

flaws in the program logic for checking certificates.

[Brubaker et al, Using Frankencerts for Automated Adversarial Testing of Certificate

Validation in SSL/TLS Implementations, Oakland 2014]

• Code coverage requirements on the test suite would also have helped.

18

Fuzzing

19

The idea

Suppose some C(++) binary asks from some input

Please enter your username

>

What would you try?

1. ridiculous long input, say a few MB

If there is a buffer overflow, a long input is likely to trigger a SEG FAULT

2. %x%x%x%x%x%x%x%x

To see if there is a format string vulnerability

On the command line, we cannot include a null terminator \0 in an input,

but in other situations we may be able to

3. Other malicious inputs, depending on back-ends, technologies &

APIs used: eg SQL, XML, JSN, Unicode character encodings,…

Out of scope for the project assignment

20

Fuzzing

• Fuzzing aka fuzz testing is a highly effective, largely automated,

security testing technique

• Basic idea: (semi) automatically generate random inputs and see if

an application crashes

– So we are NOT testing functional correctness (compliance)

• The original form of fuzzing: generate very long inputs and see if

the system crashes with a segmentation fault.

21

How to fuzz

Depending on input type

• very long inputs, very short inputs, or completely blank input

• min/max values of integers, zero and negative values

• depending on what you are fuzzing, include special values, characters or

keywords likely to trigger bugs, eg

– nulls, newlines, or end-of-file characters

– format string characters %s %x %n

– semi-colons, slashes and backslashes, quotes

– application specific keywords halt, DROP TABLES, ...

–

Good validation and/or sanitisation would catch these problems.

More on this in later lecture on secure input handling.

22

Pros & cons of fuzzing

Pros

• Very little effort: test cases are automatically generated,

and test oracle is trivial

– Fuzzing of a C/C++ binary quickly gives a good indication of robustness

of the code

Cons

• Only finds ‘shallow’ bugs and not ‘deeper’ bugs

– If a program takes complex inputs or the program is stateful,

‘smarter’ fuzzing is needed to trigger bugs.

• Crashes may be hard to analyse; but a crash is a clear true positive
that something is wrong!

– unlike a complaint from a static analysis tool like PREfast

23

Improved crash/error detection

Making systems crash on errors is useful for fuzzing!

So when fuzzing C(++) code, the memory safety checks listed in the

SoK paper (discussed last two weeks) can be deployed to make crash

in the event of memory corruptions more likely

Tools for this include

• ASan - AddressSanitizer

• MSan – MemorySanitizer

• valgrind

– MemCheck

Ideally checks for both spatial bugs (buffer overruns)

& temporal bugs (malloc/free bugs)

24

Types of fuzzers

1) Mutation-based: apply random mutations to set of valid inputs

• Eg observe network traffic, than replay with some modifications

• More likely to produce interesting invalid inputs than just random input

2) Generation-based aka grammar-based aka model-based:
generate semi-well-formed inputs from scratch, based on knowledge

of file format or protocol

• with tailor-made fuzzer for a specific input format,

or a generic fuzzer configured with a grammar

• Downside?

more work to construct this fuzzer or grammar

3) Evolutionary: observe execution to try to learn which mutations are

interesting

• For example, afl, which uses a greybox approach

4) Whitebox approaches: analyse source code to construct inputs

• For example, SAGE
25

Example mutational fuzzing

26

Example: Fuzzing OCPP [research internship Ivar Derksen]

• OCPP is a protocol for charge points

to talk to a back-end server

• OCPP can use XML or JSON messages

Example message in JSON format

{ "location": NijmegenMercator215672,

"retries": 5,

"retryInterval": 30,

"startTime": "2018-10-27T19:10:11",

"stopTime": "2018-10-27T22:10:11" }

27

Classification of messages into

1. malformed JSON/XML

eg missing quote, bracket or comma

2. well-formed JSON/XML, but not legal OCPP

eg with field names not in OCPP specs

3. well-formed OCPP

can be used for a simple test oracle:

• The application should never crash

• Malformed messages (type 1 & 2) should generate generic error response

• Well-formed messages (type 3) should not

Note: this does not require any understanding of the protocol semantics!

Figuring out correct responses to type 3 would require that.

Example: Fuzzing OCPP

28

1 malformed JSON

2 correct JSON

3 valid OCPP

Test results with fuzzing OCPP server

• Mutation fuzzer generated 26,400 variants from 22 example OCPP

messages in JSON format

• Problems spotted by this simple test oracle:

– 945 malformed JSON requests (type 1) resulted in malformed JSON

response

Server should never emit malformed JSN!

– 75 malformed JSON requests (type 1) and 40 malformed OCPP

requests (type 2) result in a valid OCPP response that is not an error

message.

Server should not process malformed requests!

• One root cause of problems: the Google’s gson library for parsing JSON

by default uses lenient mode rather than strict mode

– Why does gson even have a lenient mode, let alone by default?

• Fortunately, gson is written in Java, not C(++), so these flaws do not result

in exploitable buffer overflows

29

Postel’s Law aka Robustness Principle

“Be conservative in what you send,

be liberal in what you accept”

[Named after Jon Postel, who wrote early version of TCP]

Is this good or bad?

• Good for getting interoperable implementations up & running 

• Bad for security, as it leads to implementations with non-standard

behavior, deviating from the official specs, in corner cases,

which may lead to weird behaviour and bugs

30

Generational fuzzing

aka

Grammar-based fuzzing

31

CVEs as inspiration for fuzzing file formats

• Microsoft Security Bulletin MS04-028

Buffer Overrun in JPEG Processing (GDI+) Could Allow Code Execution

Impact of Vulnerability: Remote Code Execution

Maximum Severity Rating: Critical

Recommendation: Customers should apply the update immediately

Root cause: a zero sized comment field, without content

• CVE-2007-0243

Sun Java JRE GIF Image Processing Buffer Overflow Vulnerability
Critical: Highly critical Impact: System access Where: From remote

Description: A vulnerability has been reported in Sun Java Runtime

Environment (JRE). … The vulnerability is caused due to an error when

processing GIF images and can be exploited to cause a heap-based

buffer overflow via a specially crafted GIF image with an image width of 0.

Successful exploitation allows execution of arbitrary code.

Note: a buffer overflow in (native library of) a memory-safe language

32

Generation/grammar/model-based fuzzing

Generational fuzzers generate files or data packets that are slightly

malformed or hit corner cases in the spec using knowledge of the

input format/protocol

Possible starting point: a

grammar defining legal inputs,

or a data format specification

Typical things to fuzz:

• many/all possible value for specific fields

esp undefined values, or values Reserved for Future Use (RFU)

• incorrect lengths, lengths that are zero, or payloads that are too

short/long

Tools for building such fuzzers:

SNOOZE, SPIKE, Peach, Sulley, antiparser, Netzob, ...

33

Example: generation based fuzzing of GSM

[Master theses of Brinio Hond and Arturo Cedillo Torres]

GSM is a extremely rich & complicated protocol

34

SMS message fields

Field size

Message Type Indicator 2 bit

Reject Duplicates 1 bit

Validity Period Format 2 bit

User Data Header Indicator 1 bit

Reply Path 1 bit

Message Reference integer

Destination Address 2-12 byte

Protocol Identifier 1 byte

Data Coding Scheme (CDS) 1 byte

Validity Period 1 byte/7 bytes

User Data Length (UDL) integer

User Data depends on CDS and UDL

35

Example: GSM protocol fuzzing

Lots of stuff to fuzz!

We can use a USRP

with open source cell tower software (OpenBTS)

to fuzz any phone

36

Fuzzing SMS layer of GSM reveals weird functionality in GSM standard

and in phones

Example: GSM protocol fuzzing

37

Example: GSM protocol fuzzing

Fuzzing SMS layer of GSM reveals weird functionality in GSM standard

and in phones

– eg possibility to receive faxes (!?)

Only way to get rid if this icon; reboot the phone
38

you have a fax!

Example: GSM protocol fuzzing

Malformed SMS text messages showing raw memory contents, rather

than content of the text message

39

Our results with GSM fuzzing

• Lots of success to DoS phones:

phone crashes, disconnects from network, stops accepting calls,…

– eg requiring reboot or battery removal to restart, to accept calls again,

or to remove weird icons

– after reboot, the network might redeliver the SMS message, if no

acknowledgement was sent before crashing, re-crashing phone

But: not all these SMS messages could be sent over real network

• There is surprisingly little correlation between problems and

phone brands & firmware versions

– how many implementations of the GSM stack did Nokia have?

• The scary part: what would happen if we fuzz base stations?

[Fabian van den Broek, Brinio Hond and Arturo Cedillo Torres, Security Testing of

GSM Implementations, ESSOS 2014]

[Mulliner et al., SMS of Death, USENIX 2011]

40

Security problem with more complex input formats

41

Example dangerous

SMS text message

• This message can be sent over the network

• Different characters sets & characters encoding are a constant

source of problems. Many input formats rely on underlying notion of

characters.

Example: Fuzzing fonts

Google’s Project Zero found many Windows kernel vulnerabilities by fuzzing

fonts in the Windows kernel

https://googleprojectzero.blogspot.com/2017/04/notes-on-windows-uniscribe-fuzzing.html

42

Even handling simple input languages can go wrong!

Sending an extended length APDU can crash a contactless payment

terminal.

Found accidentally, without even trying to fuzz,

when sending legal (albeit non-standard) messages

[Jordi van den Breekel, A security evaluation and proof-of-concept relay attack on

Dutch EMV contactless transactions, MSc thesis, 2014]

43

