
Non-atomic check and use

aka

TOCTOU (Time of Check, Time of Use)

or

Race conditions

Erik Poll
Digital Security group

Radboud University Nijmegen

Race condition

• Two concurrent execution threads both execute the statement

x = x+1;

where x initially has the value 0.

• What is the value of x in the end?

Answer: x can have the value 2 or 1

• Worse still, in some languages, eg. Java, it can have an arbitrary

value

• The root cause of the problem is that x = x+1 is not an atomic

operation, but happens in two steps, reading x and assigning

the new value, which may be interleaved in unexpected ways

• Why can this lead to security problems?

• Think of internet banking, and running two simultaneous

sessions with the same bank account… Do try this at home! 

2

A classic source of (security) problems

• Race condition aka data race is a common type of bug in

concurrent programs

• Basically: two execution threads mess with the same data or

object (program variable, file, ...) at the same time

• Not necessarily a security bug, but it can be...

• Non-atomic check and use

aka TOCTOU (Time Of Check, Time of Use)

is a closely related type of security flaw

Problem: some precondition required for an action is

invalidated between the time it is checked and the time the

action is performed

• Typically, this precondition is access control condition

• Typically, it involves some concurrency

3

Classic UNIX race condition

lpr –r

• Print utility with –r option to remove file after printing

• Could be used to delete arbitrary files

How?

1. User executes lpr –r symlink

where symlink is a symbolic link

2. OS checks that user has permission to read & delete this file

3. While the file is printing move the link is moved, eg to
/etc/passwd

4. after printing lpr,which has root permission, deletes
/etc/passwd

Root of the problem: time between check (2) and use (4)

4

Learning from past mistakes?

lpr –r is a classic security flaw from the 1970s, but similar flaws
happen decades later

CVE-2003-1073
A race condition in the at command for Solaris 2.6 through 9
allows local users to delete arbitrary files via the -r argument
with .. sequences in the job name, then modifying the directory
structure after at checks permissions to delete the file and
before the deletion actually takes place

Combination of race condition with failure to check that file
names do not contain ..

5

Another classic: mkdir on Unix

• mkdir creates a new directory/folder

• this program is setuid root, ie. executes as root

• It creates new directory non-atomically, in several steps:

1. enter super-user mode

2. creates the directory, with owner is root

3. sets the owner, to whoever invoked mkdir

4. exit super-user mode

• Attack: by creating a symbolic link between steps 2 and 3,

attacker can own any file

6

Example race condition

const char *filename="/tmp/erik";

if (access(filename, R_OK)!=0) {

... // handle error and exit;

}

// file exists and we have access

int fd open (filename, O_RDONLY);

...

Between calls to access and open the file might be removed, or a

symbolic link in the path might be reset!

7

Race condition & file systems

Signs of trouble:

• Access to files using filenames rather than file handles or file

descriptors

– filenames may point to different files at different moments in

time

• Creating files or directories in publicly accessible places, for
instance /tmp

– especially if these have predictable file names

8

Spot the race condition!

public class SimpleServlet extends HttpServlet {

private String query;

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

try { Connection conn =

DriverManager.getConnection("jdbc:odbc ... ");

query = "INSERT INTO roles" + "(userId, userRole)" + "VALUES " + "('" +

request.getParameter("userId") + "'," +

"'standard')";

Statement stmt = conn.createStatement();

stmt.executeUpdate(query);

} catch ...

}

9

Concurrent calls of doGet will

be on the same HttpServlet

object and hence use the

same instance field query

Spot the race condition!

public class SimpleServlet extends HttpServlet {

private String query;

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

try { Connection conn =

DriverManager.getConnection("jdbc:odbc ... ");

query = "INSERT INTO roles" + "(userId, userRole)" + "VALUES " + "('" +

request.getParameter("userId") + "'," +

"'standard')";

Statement stmt = conn.createStatement();

stmt.executeUpdate(query);

} catch ...

}

10

How could you

know this?

Fix: now every (possibly

concurrent) call of doGet
has its own query field

Spot the race condition!

public class SimpleServlet extends HttpServlet {

private String query;

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

String query;

try { Connection conn =

DriverManager.getConnection("jdbc:odbc ... ");

query = "INSERT INTO roles" + "(userId, userRole)" + "VALUES " + "('" +

request.getParameter("userId") + "'," +

"'standard')";

Statement stmt = conn.createStatement();

stmt.executeUpdate(query);

} catch ...

}

11

MIDP Java feature phone security bug

Malicious game on Siemens S55 feature phone

exploited race condition in GUI

to let user unwittingly authorise an SMS

If user presses ok he agrees to the underlying pop-up

12

OK to send
SMS to 6492?Do you want to

play the game?

OK to send
SMS to 6492?

• dasd

Edge & Safari GUI bug [CVE-2018-8383]

URL in address bar can be spoofed with a race condition

• Script loads legitimate page, changing address bar, but over

non-existent port, and then quickly loads another page

https://www.theregister.co.uk/2018/09/11/safari_edge_spoofing/

https://youtu.be/Ni2XzF5-ixY

https://youtu.be/dGJSsK55nfQ

