Fuzzing results

Seyed Behnam Andarzian
Cristian Daniele

Erik Poll

Digital Security group
Radboud University Nijmegen

Group

© oo N OGNS

10

12
13
17
20
21

Fuzzing case studies

Case study Case study task
AudioConverter
picojpeg converts jpeg to tga
SVG2ASS, converts SVG vector image files into ASS
STL20BJ, ImageToASCI| files
Exiv2 processes metadata from images
FFmpeg media player
Pixelsorter sorts pixels
LibGD image manipulation library
PDF Text Extraction extracts text from PDF files
xpdf PDF reader
GEGL graphics library
GOCR optical character recognition
Tifig image converter
SoX audio converter
Lepton JPEG compression/decompression tool
mpv media player
LibVips image processing

Case study
AudioConverter
picojpeg
SVG2ASS,

Tools used

Tool used

AFL, zzuf

AFL++, Radamsa

AFL++, Radamsa, Honggfuzz

STL208BJ, ImageToASCII

Exiv2
FFmpeg
Pixelsorter
LibGD
PDF Text Extraction
xpdf
GEGL
GOCR
Tifig

SoX
Lepton
mpv
LibVips

AFL++, Radamsa
zzuf, AFL++, Honggfuzz

Zzuf, Ramdamsa, Honggfuzz, AFL++, AFL
AFL++, Radamsa, Honggfuzz

AFL++ Honggfuzz

AFL++, Radamsa, Honggfuzz

AFL++, Radamsa, Honggfuzz
AFL, Radamsa, Honggfuzz

AFL++, Radamsa , Honggfuzz
AFL++, Radamsa, Honggfuzz

zzuf, AFL++, Honggfuzz

zzuf, AFL++, Honggfuzz
AFL++, Radamsa, Honggfuzz

WN =

~

10
11

12

13

17

20

21

Case study
AudioConverter
picojpeg
SVG2ASS,
STL208BJ,
ImageToASCI|
Exiv2

FFmpeg

Pixelsorter

LibGD

Fuzzing results

Tools that found crashes

zzuf with TSan

AFL++ with or without ASan
AFL++, Honggfuzz and Radamsa

AFL++ with ASan,
Radamsa with and without ASan
AFL++ with Asan (no crashes but hangs)

AFL/AFL++ (with and without ASan)

AFL++, Radamsa, Honggfuzz with ASan

PDF Text Extraction Honggfuzz without ASan

xpdf

GEGL
GOCR

Tifig
SoX

Lepton

mpv

LibVips

AFL++, Radamsa and Honggfuzz

with and without ASan

AFL++ with and without ASan, Radamsa
AFL++ with ASan,

Honggfuzz only finds hangs

Honggfuzz and AFL++

(with or without ASan & MSan?)
Honggfuzz and AFL++ with and without
sanitizer,

Radamsa with UBSan or MSan

AFL++ (with or without ASan?),

zzuf

AFL++ with FRIDA,

Hongfuzz only finds hangs

AFL++ with and without ASan, Honggfuzz

Tools that didn’t find bugs
Afl with and without ASan
Radamsa

zzuf and Honggfuzz

Radamsa,
Honggfuzz,
Zzuf

AFL++

Honggfuzz
Radamsa

Radamsa

Honggfuzz
zzuf

Radamsa

Misc. issues

afl unique !'= unique

afl slow or zzzzz....

Are hangs really hangs?

Who actually reporting bugs found?

Good/bad experiences using cloud?

Unexpected findings

Group 8 (PDF text extraction): AFL++ with ASan could not find
bugs but Honggfuzz without ASan could

Group 9 (xpdf): AFL++ and Radamsa without ASan found more
bugs than AFL++ with ASan

Group 8 — PDF text extraction

Fuzzer Output
Fuzzer Tool Input file Number of | Number of | Unique
executions crashes | Crashes -
afl minimal.pdf 264k 0 0 1h50min
afl tiny.pdf 273k 0 0 1h53min
minimal.pdf, tiny.pdf,
weirdCharsFonts.pdf,
afl+ASAN pdf just_jpg.pdf 391k 0 55min
minimal.pdf, tiny.pdf,
weirdCharsFonts. pdf,
afl+ASAN pdf_just_jpg.pdf 436k 0 55min
Hongg minimal.pdf 527k 2156 20 4h17
Hongg test{1-5}.pdf ™ 817 23 7h55
Hongg pdf_just_jpg.pdf 917k 5813 14 9h11

Unexpected: AFL++ with ASan could not find bugs
but Honggfuzz without ASan could

— but code was left uninstrumented using AFL++?7?

Honggfuzz could not be made to work with ASan

Number

Experiment
1

Experiment
2

Experiment
3

Experiment
4

Experiment
5
Experiment
6

Group 9 - xpdf

Tool Time # test
cases

AFL++ 3h 45m 36270
(15m/core)

AFL++ with 3h 45m 32393

ASan (15m/core)

HonggFuzz 7h45m 50945
(116m/core)

HonggFuzz with | 37h 45m

instrumentation | (1132m/core)
Radamsa 20m 68897
Radamsa with 30m 50630
ASan

Issues
found
117
crashes. 3
hangs

31
crashes. 2
hangs

19
crashes. 2
hangs

0 crashes.
12
timeouts
20 crashes

10 crashes

crashes/mill. crashes/hour
TC

3226 31

957 8

373 3

0 0

290 60

197 20

Unexpected: AFL++ and Radamsa without ASan found more bugs than
AFL++ with ASan

— but: Ramamsa commonly reports the same bug many times

Group 2 - picojpeg

Fuzzer Sanitizer Seed Duration | # executions Issues found
none ~ 100.6M 26 crashes & 7 hangs
ASan minimal JPEG ~ 52.8M 80 crashes & 10 hangs
MSan ~ 1.9M 25 crashes & 6 hangs
afl++ none ~ 14h ~ 65.8M 62 crashes & 15 hangs
ASan Radboud Logo ~ 26.9M 115 crashes & 15 hangs
MSan ~ 1.7TM 24 crashes & 8 hangs

 Minimal JPEG (107 bytes) vs Radboud logo (40kB) makes little difference
« One bug because of malloc returning null

« Still open question if hangs were bugs or not

Group 2 - picojpeg - root cause analysis

Fuzzer Sanitizer Seed Duration | # executions Issues found
none ~ 100.6M 26 crashes & 7 hangs
ASan minimal JPEG ~ 52.8M 80 crashes & 10 hangs
MSan ~ 1.9M 25 crashes & 6 hangs
afl++ none ~ 14h ~ 65.8M 62 crashes & 15 hangs
ASan Radboud Logo ~ 26.9M 115 crashes & 15 hangs
MSan ~ 1.TM 24 crashes & 8 hangs

We checked how many different stack traces were produced by the crashes. That way, we
could reduce the number of problems a lot. The address sanitizer found two variants of a stack
buffer overflow and one variant of each a global buffer overflow, heap buffer overflow, segmentation
fault, and the program requesting more memory than available, i.e. six different problems. The
memory sanitizer showed two segmentation laults, two uses of uninitialized values, and one memory
allocation that exceeds the available memory, i.e. five different problems.

Using the stack traces, we were able to spot nine different places in the source code of the
SUT that produced the errors. Two crashes had insufficient backlogs to spot the failing line. Due
to time constraints and the complexity of the JPEG format and thus the resulting code, we were
not able to spot the root causes. One error could have been mitigated by checking the result of
malloc before using it. The malloc was returning NULL in this specific case because the requested
size was many orders of magnitudes bigger than the available memory.

10

Group 3 - Svg2ass

Tool Workers | Time (total) | Test cases | Mutations | Hangs | Crashes
AFL++ (initial test) 1 48m 1 0 3
AFL++ (server, various flags) | 4 22d 21h 1 550.078.548 | 136 296
Honggfuzz 8 13h 40m 4 83.046.724 2 2087
Radamsa 1 2h 54m 1 1.056.395 0 77
AFL++ with ASan 1 1d 2h 1 51.586.646 15 70
Radamsa with ASan 1 3h 12m 1 375.509 0 278

« ASan slows things down by factor (but it usually worth it?)

« Every crash attributed to the same error:

double free or corruption (!prev)
Aborted

One interesting observation was that 292 of these crashes were found within the first
day of running the fuzzers. It seems that after a day, most inputs that it tried had

that, ASan reported over 368,000 memory leaks in the SVG2ASS application, which we
would not have found using the regular fuzzing setup without any sanitization.

11

Group 4 - exiv2

« Speed-up from 20 to 1000-2000 execs/sec by using persistent mode

 As expected, no bugs in most recent version as project uses fuzzer now

Version Instrumentation Inputs Deterministic Time Execs Crashes
v0.27.4-RC2 ASAN+UBSAN JPEG No 01:58:35 6.41M 48
Yes 01:33:14 4.61M 22

PNG No 02:07:05 8.93M 36

Yes 03:40:17 9.35M 0

v0.27.5 ASAN+UBSAN JPEG No 03:11:41 9.89M 0
Yes 03:11:16 6.22M 0

PNG No 02:12:56 10.2M 0

Yes 08:32:30 33.9M 0

Table 1: AFL4++ run on two versions of exiv2

12

Group 12 -

Tifig

Number Tool Time No of initial files | No of test cases | Issues found | Crashes/hour
Tifig AFL++ lhr 1min 1 36822 34 26,36

Tifig Radamsa** | Inconclusive | 1 Inconclusive Inconclusive | Inconclusive
Tifig Honggfuzz | 5 min 3 1.481 329 3948

Tiv AFL++ 1hr 13min 3 305972 0 0

Tiv Radamsa®* | Inconclusive | 1 Inconclusive Inconclusive | Inconclusive
myHTML | AFL++ 3hr 22min 1 8383972 0 0

* Many (all?) ‘unique ’ crashes found by Honggfuzz were the same bug

Although all of the tools helped and gave us some nice insights into what caused
the crashes. We found that ASan returned the easiest to understand reasons for
the crashes. We also concluded that valgrind, was a great tool but it is very slow.

 Root cause analysis:

1 heap buffer overflow,

1 SEGV on unknown address (found using MSan rather than ASan)

1 heap use-after-free?

Some bugs already submitted, but project abandonded

13

239
240
241
242

Group 3 — svg2ass — root cause analysis

inspected using GDB
error in free() statement

problem in parsing of (malformed) XML structure, with no tag behind <

case ST_CONTENT:
m = strchr(p, '<');
if (m)
*sm—+ = 'Y0';

— This probably qualifies as shotgun parsing?

Was this is the latest release of svg2ass?

If so, did you report the bug / the fix?

14

Group 4 - exiv — older versions using Radamsa

Version Instrumentation Number Inputs Time No of mutations! Crashes
vi.16 None testOther Other 00:15:04 a7 * 100 29
testJPEG JPEG 00:00:08 4 * 100
testPNG PNG 00:00:08 4 * 100
testTYPES Types 00:00:21 13 * 100
runOtherl Other 02:33:40 97 * 1000 212
runJPEGI JPEG 00:13:19 4 * 10000 1
runPNG1 PNG 00:13:02 4 * 1000 0
runTypesl Types 00:36:35 13 * 10000 173
vi).20 None runQOther2 Other 00:19:14 a7 * 100 1
runJPEG2 JPEG 00:13:57 4 * 10000 0
rnnPNG2 PNG 00:14:35 4 * 10000 0
runTypes2 Types 00:37:40 13 # 10000 0
v0.27.4-RC2 None runQOtherd Other 02:22:58 97 * 1000 0
runJPEG3Y JPEG 00:11:22 4 * 10000 0
runPNG3 PNG 00:09:06 4 * 10000 0
runTypes3 Types (:22:55 13 * 10000 0

15

Group 4 - exiv — latest versions using Radamsa

v(.27.5 None runOtherd Other 00:13:56 a7 * 100 0
rnJPEG4 JPEG 00:08:25 4 * 10000 0

runPNG4 PNG 00:07:44 4 * 10000 0

runTypesd Types 00:20:10 13 * 10000 0

ASAN + UBSAN instrOther Other 00:42:07 a7 * 100 3

instrJPEG JPEG 01:19:25 4 * 10000 0

instrPNG PNG 01:19:42 4 * 10000 0

instrTyvpes Types 04:07:13 13 * 10000 0

Even

in the most recent version, Radamsa managed to find some crashes that AFL++
did not manage to find.

It is also quite notable how, in the most recent versions, instrumentation is
basically required in order to find crashes for Exiv2, while this was not necessary
for older versions. This shows that Exiv2 definitely improved security with
regards to memory safety over the years.

Does fuzzing find different bugs for different operations?

For the fuzzing of LibGD we used many different input formats, such as
BMP, PNG, GIF, TGA. We ran with this input format for many hours and
performed a few different operations on these images, such as rotating; scaling;
negation and Gaussian blur. And with these operations we provided various
arguments to the functions of the library.

We mentioned that we were curious whether using LibGD’s transformations
in our experiments would affect their outcome. We found this not to be the case

for the experiments that we performed.

group 21 had different experience

Experiment | Libvips | Initial Tools Duration No. of test | Test/min | Issues
number module | seed used in minutes | cases found
19 rot blank.jpeg | AFL++ |46 193.000 4.195 None
& ASan
20 gamma | blank.jpeg |AFL++ | 109 351.000 3.220 None
& ASan
21 affine blank.jpeg | AFL++ | 170 1.130.000 | 6.647 3 crashes,
& ASan 26 hangs
22 draw_re | blank jpeg |AFL++ | 241 1.700.000 | 7.053 115 hangs
ct & ASan

17

Group 13 - Sox

No. Tool Sanitizer =~ Time Test cases Crashes Timeouts Crashes/million Cases/hour
1 AFL++ None 12 hrs 59 245 651 32 3 0.54 4 937 137
2 AFL++ ASAN 12 hrs 19 772 819 30 6 1.52 1647 734
3 AFL++ MSAN 12 hrs 2779 440 26 11 9.35 231 620
4 AFL++ UBSAN 12 hrs 139 110 621 75 3 0.54 11 592 551
D AFL++ CFISAN 12 hrs 55 350 939 24 4 0.43 4 612 578
6 Radamsa None 12 hrs 7 583 000 0 0 0 631 916
7 Radamsa ASAN 12 hrs 4 359 500 0 0 0 363 291
8 Radamsa MSAN 12 hrs 5 062 000 1 0 0.71 421 833
9 Radamsa UBSAN 12 hrs 5 786 500 896047 0 567 837.14 482 208
10 Radamsa CFISAN 12 hrs 7 579 500 0 0 0 631 625
11 | HonggFuzz None 18 hrs 1202 474 0 451 0 66 804
12 | HonggFuzz ASAN 18 hrs 1094 811 277 195 46.58 60 822
13 | HonggFuzz MSAN 18 hrs 1 088 257 51 130 0 60 458
14 | HonggFuzz UBSAN 18 hrs 1 063 982 0 14 0 59 110
15 | HonggFuzz CFISAN 18 hrs 1 206 133 0 484 0 67 007

Radamsa finds many more duplicates

Was this the /atest version & did you report the bugs?

18

Group 13 — SoX — root place & cause analysis

Source file | Sanitizer Issue Type Line number Column number
sre/wav.c MSAN use-of-uninitialized-value 208 11
sre/wav.c MSAN FPE 848 80
sre/wav.c MSAN FPE 1353 34
sre/wav.c MSAN use-of-uninitialized-value 527 D
sre/wav.c MSAN use-of-uninitialized-value 773 D
sre/wav.c MSAN use-of-uninitialized-value 518 11
sre/xa.c ASAN SEGV 219 26
sre/wav.c ASAN FPE 1353 34
sre/wav.c ASAN FPE 848 80
src/adpem.c | ASAN heap-buffer-overflow 154 13

. - Running AFL++
with MSAN and ASAN two same issues were found (see Table 2). Comparing AFL++ to Radamsa
no similar issues were found even if issues were already found in the same source file.

19

Group 17 - Lepton

Number | Tool Time No of test cases Issues found
1 zzuf compression 15 min 50,000 .jpg 49,901 crashes,
0 hangs
2 zzuf decompression 25 min 100,000 .lep 99,953 crashes,
0 hangs
3 zzuf compression with | 33 min 50,000 .jpg 49,812 crashes,
Asan 0 hangs
4 zzuf decompression 1 hour 11 100,000 .lep 99,932 crashes,
with Asan min 0 hangs
5 AFL++ instrumented 2 hours 619,000 43 crashes, 1
compression hang
6 AFL++ 31 min 500,000 6767 crashes, 0
non-instrumented hangs
compression
7 AFL++ instrumented 2 hours 24 321,000 5 crashes, 19
decompression min hangs
8 AFL++ 2 hours 21 1,960,000 0 crashes, 0
non-instrumented min hangs
decompression
9 Hongfuzz compression | 1.5 hours 1,820,000 .jpg 0 crashes, 0
hangs
10 Hongfuzz 1 hour 2,330.000 .lep 0 crashes, 0
decompression hangs

But crashes are gentle crashes, ie. crash with error messages. No memory

corruption bugs found

Were hangs found new & in the latest version? Did you report them?

20

Group 17 - Lepton

Both zzuf and AFL++ ended up finding a lot of gentle crashes, but AFL++ was the only
fuzzer which ended up finding files on which Lepton hangs indefinitely. These hangs are
much more impactful than gentle crashes for Lepton when used as a component for
Dropbox, so we think AFL++ has the best results, even though zzuf finds more gentle

crashes.

21

Different next year?

Brightspace forum & class discussion of potential targets
— to steer clear off uninteresting targets

« Suggestions of projects to avoid? Eg mplayer, mpy,
FFmpeg? Others?

Demo & discussion session early November

Other suggestions?

22

	Slide 1: Fuzzing results
	Slide 2: Fuzzing case studies
	Slide 3: Tools used
	Slide 4: Fuzzing results
	Slide 5: Misc. issues
	Slide 6: Unexpected findings
	Slide 7: Group 8 – PDF text extraction
	Slide 8: Group 9 - xpdf
	Slide 9: Group 2 - picojpeg
	Slide 10: Group 2 – picojpeg – root cause analysis
	Slide 11: Group 3 – Svg2ass
	Slide 12: Group 4 – exiv2
	Slide 13: Group 12 - Tifig
	Slide 14: Group 3 – svg2ass – root cause analysis
	Slide 15: Group 4 – exiv – older versions using Radamsa
	Slide 16: Group 4 – exiv – latest versions using Radamsa
	Slide 17: Does fuzzing find different bugs for different operations?
	Slide 18: Group 13 - Sox
	Slide 19: Group 13 – SoX – root place & cause analysis
	Slide 20: Group 17 - Lepton
	Slide 21: Group 17 - Lepton
	Slide 22: Different next year?

