
State Machine Learning
aka active learning

aka regular inference

aka automata learning

aka protocol state fuzzing

aka

Erik Poll
Radboud University Nijmegen

To read: Protocol state machines and session languages, LangSec’15

1

Stateless vs stateful systems

• Stateless system: giving the same input (again) always results in

the same response

– Eg. opening a.pdf, b.pdf, c.pdf in a PDF viewer

– In other words, the system has no memory/no history

• Stateful system: giving the same input again may result in a

different response

– Eg. withdrawing 100 euros from an ATM

– Processing the input results in a state change of the system

Do the fuzzers you tried work best for stateless or stateful systems?

Stateless

Which systems are harder to test (or fuzz): stateless or stateful systems?

Stateful, because we can not just try different inputs,

but also different sequences of inputs

2

Many procotols are stateful and then involve two levels of languages

1) a language of input messages

or packets

2) a notion of session,

or sequence of messages

Bugs can arise on both levels!

How can we develop code for the two levels in a systematic way?

How can we test or fuzz these two levels?

For level 1 we can use fuzzing techniques discussed earlier

For level 2 we can do something different, as we discuss now

Protocols

3

Specification with Message Sequence Charts (MSCs)

Eg for SSH

Typical protocol spec given as Message Sequence Chart or in Alice-Bob style.

NB oversimplifies because it only specifies one correct run, the happy flow

4

Protocol state machines

Most protocols allow more than just one

specific happy flow described by an MSC

A better spec can be given using a

Finite State Machine (FSM)

aka Deterministic Finite Automaton (DFA)

This still oversimplifies:

it still only describes happy flows,

albeit several instead of just one

Any implementation of the protocol

will have to be input-enabled

5
SSH transport layer

input enabled state machines

A state machine is input enabled iff

in every state

it is able to receive every message

Often, many messages go to

1) some error state,

2) back to the initial state, or

3) are ignored

6

input enabling

State machine that is not input-enabled

Input enabled version

Alternative input enabled version

Yet another alternative, with an error state

7

BA C

BA C

A,B,C
A,B

A,C

B,C

BA C

A,B,CA,BA,C

B,C

BA C

A,B,C
A,B

A,CB,C

A,B,C

Typical prose specifications: SSH [RFCs 4251-4254]

“Once a party has sent a SSH_MSG_KEXINIT message for key exchange or
re-exchange, until it has sent a SSH_MSG_NEWKEYS message, it MUST NOT
send any messages other than:

• Transport layer generic messages (1 to 19) (but SSH_MSG_ SERVICE
REQUEST and SSH_MSG_SERVICE_ACCEPT MUST NOT be sent);

• Algorithm negotiation messages (20 to 29) (but further SSH_MSG KEXINIT
messages MUST NOT be sent);

• Specific key exchange method messages (30 to 49).”

“The provisions of Section 11 apply to unrecognised messages”

In Section 11:

“An implementation MUST respond to all unrecognised messages with an
SSH_MSG_UNIMPLEMENTED. Such messages MUST be otherwise
ignored. Later protocol versions may define other meanings for these
message types.”

Understanding protocol state machine from prose is hard!

8

Example security flaw due to flawed state machine

CVE-2018-10933

libssh versions 0.6 and above have an authentication bypass

vulnerability in the server code. By presenting the server an

SSH2_MSG_USERAUTH_SUCCESS message in place of the

SSH2_MSG_USERAUTH_REQUEST message which the server

would expect to initiate authentication, the attacker could

successfully authenticate without any credentials.

https://www.libssh.org/security/advisories/CVE-2018-10933.txt

9

More example security flaws due to flawed state machines

• MIDPSSH

no state machine implemented at all

[Verifying an implementation of SSH, WIST 2007]

• e.dentifier2

strange sequence of USB commands by-passes OK

[Designed to fail: a USB-connected reader for online banking , NordSec 2012]

There can also be fingerprinting possibilities due to differences in

implemented protocol state machines, eg in e-passports from

different countries or in TCP implementations on Windows/Linux

10

Extracting protocol state machines from code

We can infer finite state machines from implementations by black box

testing using state machine inference/learning

• using L* algorithm, as implemented in eg. LearnLib

This is effectively a form of ‘stateful’ fuzzing using a test harness that

sends typical protocol messages.

For fuzzing we send strange inputs,

for state machine learning we send strange sequences of normal inputs

It can also be regarded as a form of automated reverse engineering

It is a great way to obtain protocol state machines

• without reading specs!

• without reading code!

11

State machine inference, eg using LearnLib

Just try out many sequences of inputs, and observe outputs

Suppose input A results in output X

• If second input A results in different output Y

• If second input A results in the same output X

Now try more sequences of inputs with A, B, C, ...

to e.g. infer

The inferred state machine is an under-approximation of real system

12

A/X

A/X

A/X A/Y

B/error

A/X B/Y C/X

A/error A/error

B/error

Case study 1: EMV

• Most banking smartcards implement a variant of EMV

• EMV (Europay-Mastercard-Visa) defines set of protocols

with lots of variants

• Specs controlled by which is owned by

• Specification in 4 books totalling > 700 pages

• EMV contactless specs: 10 more books, > 1500 pages

13

http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%E3%82%AB%E3%83%BC%E3%83%89%E3%81%8C%E3%81%94%E5%88%A9%E7%94%A8%E3%81%84%E3%81%9F%E3%81%A0%E3%81%91%E3%82%8B%E3%82%88%E3%81%86%E3%81%AB%E3%81%AA%E3%82%8A%E3%81%BE%E3%81%97%E3%81%9F%EF%BC%81-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images?q%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images?q%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images?q%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images?q%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1

State machine inference of card

14

State machine inference of card

15

merging arrows

with identical

response

State machine inference of card

16

merging arrows with

same start & end state

We found no bugs, but lots of variety between cards.

[Fides Aarts et al., Formal models of bank cards for free, SECTEST 2013]

17

SecureCode application on Rabobank card

used for internet banking, hence

entering PIN with VERIFY obligatory

Understanding & comparing EMV implementations

Are both implementations correct & secure? And compatible?

Presumably they both pass a Maestro compliance test-suite...

So some paths (and maybe some states) are superfluous?

18

Volksbank Maestro

implementation

Rabobank Maestro

implementation

Case study 2: the USB-connected e.dentifier

Can we use state machine learning with

• USB commands

• user actions via keyboard

to obtain the state machine

of the ABN-AMRO e.dentifier2?

Earlier manual analysis

revealed the USB connection

has a flaw

19

GENERATE AC f(number, text)

(Manually) reverse-engineered Protocol

PC reader card

display:‘enter pin’

display:‘text’

user enters PIN

user presses OK

ASK-PIN

PIN-OK

SIGN (number, text)

USER-OK

COMPLETE

g(cryptogram)

cryptogram

PIN

OK

GENERATE AC f(number, text)

Spot the defect!

PC reader card

display:‘enter pin’

display:‘text’

user enters PIN

user presses OK

ASK-PIN

PIN-OK

SIGN (number, text)

USER-OK

COMPLETE

g(cryptogram)

cryptogram

PIN

OK

GENERATE AC f(number, text)

Attack!

PC reader card

display:‘enter pin’

display:‘text’

user enters PIN

user presses OK

ASK-PIN

PIN-OK

SIGN (number, text)

USER-OK

g(cryptogram)

cryptogram

PIN

OK

Operating the keyboard using

23

24

25

https://www.youtube.com/watch?v=hyQubPvAyq4

State machines of old vs new e.dentifier2

26
https://www.youtube.com/watch?v=hyQubPvAyq4

Would you trust this to be secure?

27

More detailed inferred state machine,

using richer input alphabet.

Do you think whoever designed or
implemented this is confident that
this is secure?

Or that all this behaviour is necessary?

Results with learning state machines for e.dentifier2

• Coarse models, with a limited input alphabet, can be learnt in a few

hours

– detailed enough to show presence of the known security flaw in the old

e.dentifier, and absence of this flaw in the new one

• The most detailed models required 8 hours or more

• The complexity of the obtained models suggest there was

no clear protocol design as the basis for the implementation

28

[Georg Chalupar et al., Automated Reverse Engineering using Lego, WOOT 2014]

https://www.youtube.com/watch?v=hyQubPvAyq4

Case study 3: TLS

State machine inferred from NSS implementation

Comforting to see this is so simple!

29

TLS... according to GnuTLS

30

TLS... according to GnuTLS

31

TLS... according to OpenSSL

32

TLS... according to Java Secure Socket Exension

33

Which TLS implementations are correct? or secure?

34

[Joeri de Ruiter et al., Protocol state fuzzing of TLS implementations, Usenix Security 2015]

Results with learning state machines for TLS

• For most TLS implementations, models can be learned within 1

hour

• Three security flaws can be found this way, in

– OpenSSL

– GnuTLS

– Java Secure Socket Extention (JSSE)

• One (not security-critical) flaw found in newly proposed reference

implementation nqbs-TLS

35

People who write specs, or make implementations, or do security

analyses probably all draw state machines on their whiteboards...

But will it they all draw an identical one?

36

Protocol state machines

Rigorous & clear specifications using protocol state machines can

improve security:

• by avoiding ambiguities

• useful for programmer

In spec does not clearly specify a state machines, extracting state

machines from code using state machine learning is great for

• security testing & analysis of implementations

• obtaining reference state machines for legacy systems

37

Uses of protocol state machines

1. Analysing the models by hand, or with model checker, for flaws

• to see if all paths are correct & secure

2. Using model when doing a manual code review

3. Fuzzing or model-based testing

• using the diagram as basis for “deeper” fuzz testing

eg fuzzing also parameters of commands

4. Program verification

• proving that there is no functionality beyond that in the diagram,

which using just testing you can never be sure of

38

The road we followed

model

specs code

implementing

state machine

learning

Ideally specs would include a state machine!

model

specs code

implementing

model-based

testing

including

Or maybe we could

generate code?

	Slide 1: State Machine Learning aka active learning aka regular inference aka automata learning aka protocol state fuzzing aka Erik Poll Radboud University Nijmegen To read: Protocol state machines and session languages, LangSec’15
	Slide 2: Stateless vs stateful systems
	Slide 3: Protocols
	Slide 4: Specification with Message Sequence Charts (MSCs)
	Slide 5: Protocol state machines
	Slide 6: input enabled state machines
	Slide 7: input enabling
	Slide 8: Typical prose specifications: SSH [RFCs 4251-4254]
	Slide 9: Example security flaw due to flawed state machine
	Slide 10: More example security flaws due to flawed state machines
	Slide 11: Extracting protocol state machines from code
	Slide 12: State machine inference, eg using LearnLib
	Slide 13: Case study 1: EMV
	Slide 14: State machine inference of card
	Slide 15: State machine inference of card
	Slide 16: State machine inference of card
	Slide 17: SecureCode application on Rabobank card
	Slide 18: Understanding & comparing EMV implementations
	Slide 19: Case study 2: the USB-connected e.dentifier
	Slide 20: (Manually) reverse-engineered Protocol
	Slide 21: Spot the defect!
	Slide 22: Attack!
	Slide 23: Operating the keyboard using
	Slide 24
	Slide 25
	Slide 26: State machines of old vs new e.dentifier2
	Slide 27: Would you trust this to be secure?
	Slide 28: Results with learning state machines for e.dentifier2
	Slide 29: Case study 3: TLS
	Slide 30: TLS... according to GnuTLS
	Slide 31: TLS... according to GnuTLS
	Slide 32: TLS... according to OpenSSL
	Slide 33: TLS... according to Java Secure Socket Exension
	Slide 34: Which TLS implementations are correct? or secure?
	Slide 35: Results with learning state machines for TLS
	Slide 36
	Slide 37: Protocol state machines
	Slide 38: Uses of protocol state machines
	Slide 39: The road we followed
	Slide 40: Ideally specs would include a state machine!
	Slide 41

