
Last week

• Spotting memory corruption bugs is hard!

– Format string attacks are easier to spot

– Undefined behaviour (eg integer overflow or null 

dereferencing) allows weird compiler behaviour

• Countermeasures

– Stack canaries

– ASLR

Today:

– more countermeasures

– static analysis with PREfast & SAL

1



3. Non-eXecutable memory (NX, aka WX, W^X, DEP)

Distinguish  

• X: executable memory (for storing code)

• W: writeable, non-executable memory (for storing data)

and let processor refuse to execute non-executable code

Attackers can then no longer jump to their own attack code,                          
as any input provide as attack code will be  non-executable

aka DEP (Data Execution Prevention).

Intel calls it eXecute-Disable (XD) 

AMD calls it Enhanced Virus Protection

Limitation:

this technique does not work for JIT (Just In Time) compilation, 
where e.g. JavaScript is compiled to machine code at run time.
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Defeating NX: return-to-libc attacks

With NX, code injection attacks no longer possible,                                            

but code reuse attacks still are...

• Attackers can no longer corrupt code or insert their own code,          
but can still corrupt code pointers 

• Called control-flow hijack in SoK paper                                                                

So instead of jumping to own attack code  

corrupt return address to jump to existing code

esp. library code in libc

libc is a rich library that offers lots of functionality,                              
eg.   system(), exec(), 

which provides attackers with all they need...
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(ROP)

Next stage in evolution of attacks, as people removed or protected 
dangerous libc calls such as system()

Instead of using a library call, attackers can

• look for gadgets, small snippets of code which end with a return, 
in the existing code base

...; ins1 ; ins2 ; ins3 ; ret

• chain these gadgets together as subroutines to form a program 
that does what they want

This turns out to be doable

• Most libraries contain enough gadgets to provide a Turing 
complete programming language

• ROP compilers can then translate arbitrary code to a sequence 
of these gadgets

A newer variant is Jump-Oriented Programming (JOP) which uses a 
different kind of code fragment as gadgets
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More advanced defences

[See SoK Eternal War in Memory paper]



Types of (building blocks for) attacks

• Code corruption attack                                                                               

Overwrite the original program code in memory 

Impossible with WX

• Control-flow hijack attack                                                                  

Overwrite a code pointer, eg return address, jump address, 
function pointer, or pointer in vtable of C++ object

• Data-only attack                                                                                              

Overwrite some data,  eg bool isAdmin;                                                                       

• Information leak                                                                      

Only reading some data; e.g. Heartbleed attack on TLS
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Control flow hijack via code pointers

• A compiler translates  function calls in source code to                                                            
call <address> or JSR <address> in machine code                            

where <address> is the location of the code for the function.

• For a  function call f(...) in C a static address (or offset) of the 

code for f may be known at compile time.                                                  

If compiler can hard-code this static address in the binary,             

WX can prevent attackers from corrupting this address

• For a virtual function call o.m(...) in C++  the address of the 

code for m typically has to be determined at runtime,                            

by inspecting the virtual function table (vtable) 

WX does not prevent attackers from corrupting code pointers 
in these tables
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Classification of defences  [SoK paper Eternal War in Memory]

• Probabilistic methods

Basic idea: add randomness to make attacks harder

– in location where certain data is located (eg ASLR),                                             

or in the way data is represented in memory (eg pointer 

encryption)

• Memory Safety

Basic idea: do additional bookkeeping & add runtime checks to 

prevent some illegal memory access

• Control-Flow Hijack Defenses

Basic idea: do additional bookkeeping & add runtime check to 

prevent strange control flow
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More randomness: Pointer Encryption (PointGuard) 

• Many buffer overflow attacks involve corrupting pointers,                  

pointers to data or code pointers

• To complicate this: store pointers encrypted in main memory,

unencrypted in registers

– simple & fast encryption scheme:  eg. XOR with a fixed value, 

randomly chosen when a process starts

• Attacker can still corrupt encrypted pointers in memory,                        

but these will not decrypt to predictable values

– This uses encryption to ensure integrity.                                     

Normally NOT a good idea, but here it works.

• More extreme variant: Data Space Randomisation (DSR) 

– store not just pointers encrypted in main memory,                                      

but store all data encrypted in memory

– Some AMD chips support this under name SME (Secure 

Memory Encryption) that uses AES
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Recent trends on pointer encryption/authentication

• Pointer Authentication on Qualcomm ARMv8.3

if not all 64 bits are needed for pointers, remaining bits can be 

used for a PAC (Pointer Authentication Code)

– 3 – 24 bits PACs using fast QARMA cipher

• Joan Daemen’s PhD student Yanis Belkheyar in our group works 

on lightweight ciphers suitable for pointer encryption for                                 

Intel’s Cryptographic Capability Computing (C3) 

– Lightweight can be lightweight in 1) power consumption,                       

2) surface area of hardware implementation, or 3) time.                                

For pointer encryption/authentication, time (aka latency) is crucial.

10



More memory safety

Additional book-keeping of meta-data                                                           

& extra runtime checks to prevent illegal memory access

Different possibilities

• add information to pointer about size of memory chunks it points 

to (fat pointers)

• add information to memory chunks about their size (Spatial 

safety with object bounds)

• …

ptr
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Fat pointers

The compiler

• records size information for all pointers  

• adds runtime checks for pointer arithmetic & array indexing

A pointer     

A fat pointer 

Downsides

• Considerable execution time overhead

• Not binary compatible – ie all code needs to be compiled to add

this book-keeping for all pointers

s o m e d a t a

p size

p
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More memory safety

Additional book keeping of meta-data                                                          

& extra runtime checks to prevent illegal memory access

Different possibilities

• add information to pointer about size of memory chunks it points 

to (fat pointers)

• add information to memory chunks about their size (Spatial 

safety with object bounds)

• keep a shadow administration of this meta-data, separate from 

the pointers & the existing memory (SoftBounds)

• keep a shadow administration of which memory cells have been 

allocated (Valgrind, Memcheck, AddressSanitizer or ASan)

– to also spot temporal bugs, ie. malloc/free bugs 

ptr
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Object-based temporal safety (Valgrind, Memcheck, ASan)

Shadow admin                                     

of allocated memory

to keep track of which memory is allocated, to generate runtime 

error when code tries to read/write unallocated memory

• Can also catch spatial bugs, ie. small buffer overruns, by keeping 

empty space between allocated chunks (unless overrun is huge)

– small overrun will end up in this unallocated space 

• Cannot spot illegal access via a stale pointer if the data chunk it 

points to  has been re-allocated 

• Eg the  last bug, line 3004, on slide 19

s o m e d a t a

o l d j u n k X

Y Z h e l l o \0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1
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Guard pages to improve memory safety

Allocate chunks with the end at a page boundary with a         

non-readable, non-writeable page        between them

Buffer overwrite or overread will cause a memory fault.

Small execution overhead, but big memory overhead

s o m e d a t a

h e l l o \0

p

q
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Control Flow Integrity (CFI)

Extra bookkeeping & checks to spot unexpected control flow

• Dynamic return integrity

Stack canaries, or shadow stack that keeps copies of all return 

addresses, providing extra check against corruption of return 

addresses

• Static control flow integrity

Idea: determine the control flow graph (cfg) and monitor jumps 

in the control flow  to spot deviant behavior

If f() never calls g(),                                                                         

because g()does not even occur in the code of f(),            

then call from f() to g() is suspicious,                                              

as is a return from g() to f()

Interrupting execution when this happens prevents (some) 

attacks.

This can detect some Return-to-libc and ROP attacks
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Static control flow integrity: example code & CFG

Before and/or after every control transfer (function call or return) 

we could check if it is legal – ie. allowed by the CFG

Some weird returns would still be allowed

• eg if we call h() from g(), and the return is to f(), this would be 

allowed by the static cfg

• Additional dynamic return integrity check can narrow this down 

to actual call site – using recorded call site on shadow stack

void f() {

... ; g();

... ; g();

... ; h();

...

}

void g(){ ..h();}

void h(){ ... }

call g
call h

return

call g

call h

g()

h()

f()

return
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Downsides of static control flow integrity checks

• Requires a whole program analysis

• Use of function pointers in C or virtual functions in C++ (that both 

result in so-called indirect control transfers) complicate   

compile-time analysis of the cfg: we’d need

• a points-to analysis to determine where such code pointers 

can point to

eg in C++,  if Animal.eat() can resolve to                   

Cat.eat() or Dog.eat(), so both these addresses              

are valid targets for transferring control

• or: simply allow transfer to any function entry point
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Typical input problem

Input problems always follow the same pattern:

1)attacker supplies some malicious input 

2)application 'processes' the input

a)by itself  and/or

b)using external tools (OS, file system, SQL database, …)

3)processing 'goes of  the rails'

which unintentionally exposes dangerous functionality 

to the attacker

New(er) features of modern OS

Stack canaries, ASLR, and NX are standard, except on very cheap 

devices (eg in IoT).

Some fancier features are slowly becoming used:

• Pointer encryption in iOS (2018)

• Hardware-enforced Stack Protection in Windows 10 (2020)

• with a shadow stack,                                                                          

using Intel Control-flow Enforcement Technology (CET) 

https://techcommunity.microsoft.com/t5/windows-kernel-internals/understanding-

hardware-enforced-stack-protection/ba-p/1247815

For more info: Evolution of CFI at Microsoft discussed by Joe Bialek

https://www.youtube.com/watch?v=oOqpl-2rMTw

The Evolution of CFI Attacks and Defenses @ OffensiveCON 18
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Exam questions: you should be able to

• Explain how simple buffer overflows work & what root causes are

• Spot a simple buffer overflow, memory-allocation problem, 

format string attack, or integer overflow in some C code 

• Explain how countermeasures - such as stack canaries,  ASLR, 

non-executable memory, CFI, bounds checkers, pointer 

encryption - work

• Explain why they might not always work
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