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Last & this week

1. Basic fuzzing with random/long inputs

2. ‘Dumb’ mutational fuzzing

example: OCPP

3. Generational fuzzing aka grammar-based fuzzing

example: GSM

4. Code-coverage guided evolutionary fuzzing with afl

aka grey box fuzzing or ‘smart’ mutational fuzzing

5. Whitebox fuzzing with SAGE

using symbolic execution
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1. Totally dumb fuzzing  - generate random (long) inputs        

2. Mutation-based - apply random mutations to valid inputs         

• Eg OCPP

• Tools: Radamsa, zzuf, ...

3. Generation-based aka grammar-based 

• Eg GSM

• Pro: can reach ‘deeper’ bugs than 1 & 2 ☺

• Con: but lots of work to construct fuzzer or grammar

• Tools: SNOOZE, SPIKE, Peach, Sulley, antiparser, Netzob, ...

Last week
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Today: more advanced strategies for testcase generation

Game changers in test-case generation:

4. Whitebox approach of SAGE

5. Coverage-guided evolutionary fuzzing with afl

observe execution to try to learn which mutations are interesting

• aka greybox approach
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Whitebox fuzzing with SAGE
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Whitebox fuzzing using symbolic execution

• The central problem with fuzzing: how can we generate inputs that 

trigger interesting code executions?

Eg fuzzing the procedure below is unlikely to hit the error case  

int foo(int x) {

y = x+3;

if (y==13) abort(); // error

}    

• The idea behind whitebox fuzzing: if we know the code, then by 

analysing the code we can find interesting input values to try.  

• SAGE from Microsoft Research that uses symbolic execution of x86 

binaries to generate test cases.
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m(int x,y){

x = x + y;              

y = y – x;            

if (2*y > 8) { ... 

}

else if (3*x < 10){ ...  

}

}
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Can you provide values for  x and  y

that will trigger execution of the 

two if-branches?



Symbolic execution  
m(int x,y){               

x = x + y;             

y = y – x;             

if (2*y > 8) { ...    

}

else if (3*x < 10){ ...  

}                 }

Given a set of constraints, an SMT solver (Yikes, Z3, ...)  produces 

values that satisfy it, or proves that it are not satisfiable.

This generates test data (i) automatically and (ii) with good coverage

• SMT solvers can also be used for static analyses as in PREfast, or more 

generally, for program verification
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Suppose x = N and y = M.

x becomes N+M

y becomes M - (N+M) = -N

if-branch taken if 2 * -N > 8, i.e. N < -4

Aka the path condition

2nd if-branch taken if                                                  
N ≥ -4  AND 3 *(M+N) < 10



Symbolic execution for test generation

• Symbolic execution can be used to automatically generate test 

cases with good coverage

• Basic idea  instead of giving variables concrete values (say 42), 

variables are given symbolic values (say α or N), and program is 

executed with these symbolic values to see when certain program 

points are reached

• Downsides of symbolic execution?

– Very expensive (in time & space)

– Things explode if there are loops or recursion, or if you make 

heavy use of the heap

– You cannot pass symbolic values as input to some APIs, system 

calls, I/O peripherals, …

SAGE mitigates these by using a single concrete execution to 

obtain symbolic constraints  to generate many test inputs for 

many execution paths
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SAGE example

Example program 

void top(char input[4]) { 

int cnt = 0; 

if (input[0] == 'b') cnt++; 

if (input[1] == 'a') cnt++; 

if (input[2] == 'd') cnt++; 

if (input[3] == '!') cnt++; 

if (cnt >= 3) crash(); 

} 

What would be interesting test cases? 

Do you think a fuzzer could find them?

How could you find them?
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SAGE example

Example program 

void top(char input[4]) { 

int cnt = 0; 

if (input[0] == 'b') cnt++; 

if (input[1] == 'a') cnt++; 

if (input[2] == 'd') cnt++; 

if (input[3] == '!') cnt++; 

if (cnt >= 3) crash(); 

} 

SAGE executes the code for some concrete input, say 'good' 

It then collects path constraints  for an arbitrary symbolic input of the 

form i0i1i2i3
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path contraints:

i0   ≠ 'b'

i1   ≠ 'a'

i2   ≠  'd'

i3   ≠  '!'



i0 ≠ 'b'

i3 ≠  '!'

i0 = 'b'

i2 ≠  'd'

i1 = 'a'

i2 =  'd'

i3 = '!'

i1 = 'a'i1 ≠ 'a' i1 ≠ 'a'

Search space for interesting inputs

Based on this one execution, combining the 4 constraints found & 

their negations, yields 24 = 16 test cases

Note: the initial execution with the input ‘good’ was not very 

interesting, but some of  these others are
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SAGE success

SAGE was very successful at uncovering security bugs, eg

Microsoft Security Bulletin MS07-017 aka  CVE-2007-0038: Critical 

Vulnerabilities in GDI Could Allow Remote Code Execution  

Stack-based buffer overflow in the animated cursor code in Windows ... 

allows remote attackers to execute arbitrary code … via a large length 

value in the second (or later) anih block of a RIFF .ANI, cur, or .ico file, 

which results in memory corruption when processing cursors, animated 

cursors, and icons

Root cause: vulnerablity in parsing of RIFF .ANI, cur, and ico-formats. 

NB SAGE automatically generates inputs triggering this bug                                    

without knowing these formats

[Godefroid et al., SAGE: Whitebox Fuzzing for Security Testing, ACM Queue 2012] 

[Patrice Godefroid, Fuzzing: Hack, Art, and Science, Communications of the ACM, 2020]
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Coverage-guided evolutionary fuzzing 

with afl

(American Fuzzy Lop)
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Evolutionary Fuzzing  

Use evolution: 

try random input mutations, and

observe the effect on some form of coverage, and

let only the interesting mutations evolve further

where “interesting” = resulting in ‘new’ execution paths

Aka coverage-guided evolutionary greybox fuzzing, 

but terminology is a bit messy/non-standard
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alf: observing jumps to find interesting inputs/input changes

input

code  
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line instruction

1 JMP 6

2 ..

3 ..

4 ..

5 JZ (Jump If Zero) 7

6 ..

7 arraycopy (dst, input[i..j] );

8

9 ..

10 JCXZ 2

11 ..

12 ..

13 println (part of input);

14 ..

15 JNE  103131

16 ..

17 ..
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

afl bitmap  shared_mem


2


3


1



afl [http://lcamtuf.coredump.cx/afl]

• Code instrumented to observe execution paths:

– if source code is available, by using modified compiler  

– if source code is not available, by running code in an emulator

• Code coverage represented as a 64KB bitmap:                                               

each control flow jumps is mapped to a change in this bitmap

– different executions could result in same bitmap, but chance is small

• Mutation strategies include: bit flips, incrementing/decrementing 

integers, using pre-defined interesting values (eg. 0, -1, MAX_INT,....) or 

user-supplied dictionary, deleting/combining/zeroing input blocks, ...

• The fuzzer forks the SUT to speed up the fuzzing

• Big win: no need to specify the input format, but still good coverage
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afl’s instrumentation of compiled code 

Code is injected at every branch point in the code 

cur_location = <SOME_RANDOM_NUMBER_FOR_THIS_CODE_BLOCK>;  

shared_mem[cur_location ^ prev_location]++; 

prev_location = cur_location >> 1; 

where shared_mem is a 64 KB memory region 

Intuition:  for every jump from L1 to L2 a different byte in  shared_mem

is changed (increased).

Which byte is determined by random values chosen at compile 

time inserted at source and destination of every jump
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Cool example:  learning the JPG file format

Fuzzing a program that expects a JPG as input, starting with 'hello 

world' as initial test input, afl can learn to produce legal JPG files              

along the way producing/discovering error messages such as

– Not a JPEG file: starts with 0x68 0x65

– Not a JPEG file: starts with 0xff 0x65 

– Premature end of JPEG file 

– Invalid JPEG file structure: two SOI markers 

– Quantization table 0x0e was not defined  

and then JPGs like 

[Source  http://lcamtuf.blogspot.nl/2014/11/pulling-jpegs-out-of-thin-air.html]
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Other strategies in evolutionary fuzzing

Instead of maximizing path/code coverage, we can also let inputs 

evolve to maximize some other variable or property

• Code may need to instrumented to let fuzzer observe that property  

Eg the x-coordinate of Super Mario

[Aschermann et al., IJON: Exploring Deep State Spaces via Fuzzing, IEEE S&P 2020]

https://www.youtube.com/watch?v=3PyhXlHDkNI
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Conclusions

• Fuzzing is great technique to find (a certain class of) security flaws!

• If you ever write or use C(++) code, you should fuzz it.

• Challenge: getting good coverage fuzzing without too much effort  

Successful approaches include

– White-box fuzzing based on symbolic execution with SAGE

– Evolutionary fuzzing aka coverage guided greybox fuzzing with afl 

• Does fuzzing makes sense for code in other programming languages?                

Yes, even if the kind of bugs found may have lower security impact.

• A more ambitious generation of tools not only tries to find security flaws, 

but also to then build exploits,  eg. angr

To read (see links on the course page)

• Section 1 of technical white paper for afl

• Patrice Godefroid, Fuzzing: Hack, Art, and Science CACM 2020
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