
Software Security

Fuzzing – continued
whitebox fuzzing with SAGE

greybox fuzzing with afl

Erik Poll

Last & this week

1. Basic fuzzing with random/long inputs

2. ‘Dumb’ mutational fuzzing

example: OCPP

3. Generational fuzzing aka grammar-based fuzzing

example: GSM

4. Code-coverage guided evolutionary fuzzing with afl

aka grey box fuzzing or ‘smart’ mutational fuzzing

5. Whitebox fuzzing with SAGE

using symbolic execution

2

1. Totally dumb fuzzing - generate random (long) inputs

2. Mutation-based - apply random mutations to valid inputs

• Eg OCPP

• Tools: Radamsa, zzuf, ...

3. Generation-based aka grammar-based

• Eg GSM

• Pro: can reach ‘deeper’ bugs than 1 & 2 ☺

• Con: but lots of work to construct fuzzer or grammar

• Tools: SNOOZE, SPIKE, Peach, Sulley, antiparser, Netzob, ...

Last week

3
Erik Poll Radboud University

Less

shallow

Today: more advanced strategies for testcase generation

Game changers in test-case generation:

4. Whitebox approach of SAGE

5. Coverage-guided evolutionary fuzzing with afl

observe execution to try to learn which mutations are interesting

• aka greybox approach

4

Whitebox fuzzing with SAGE

5

Whitebox fuzzing using symbolic execution

• The central problem with fuzzing: how can we generate inputs that

trigger interesting code executions?

Eg fuzzing the procedure below is unlikely to hit the error case

int foo(int x) {

y = x+3;

if (y==13) abort(); // error

}

• The idea behind whitebox fuzzing: if we know the code, then by

analysing the code we can find interesting input values to try.

• SAGE from Microsoft Research that uses symbolic execution of x86

binaries to generate test cases.

6

m(int x,y){

x = x + y;

y = y – x;

if (2*y > 8) { ...

}

else if (3*x < 10){ ...

}

}

7

Can you provide values for x and y

that will trigger execution of the

two if-branches?

Symbolic execution
m(int x,y){

x = x + y;

y = y – x;

if (2*y > 8) { ...

}

else if (3*x < 10){ ...

} }

Given a set of constraints, an SMT solver (Yikes, Z3, ...) produces

values that satisfy it, or proves that it are not satisfiable.

This generates test data (i) automatically and (ii) with good coverage

• SMT solvers can also be used for static analyses as in PREfast, or more

generally, for program verification

8

Suppose x = N and y = M.

x becomes N+M

y becomes M - (N+M) = -N

if-branch taken if 2 * -N > 8, i.e. N < -4

Aka the path condition

2nd if-branch taken if
N ≥ -4 AND 3 *(M+N) < 10

Symbolic execution for test generation

• Symbolic execution can be used to automatically generate test

cases with good coverage

• Basic idea instead of giving variables concrete values (say 42),

variables are given symbolic values (say α or N), and program is

executed with these symbolic values to see when certain program

points are reached

• Downsides of symbolic execution?

– Very expensive (in time & space)

– Things explode if there are loops or recursion, or if you make

heavy use of the heap

– You cannot pass symbolic values as input to some APIs, system

calls, I/O peripherals, …

SAGE mitigates these by using a single concrete execution to

obtain symbolic constraints to generate many test inputs for

many execution paths
9

SAGE example

Example program

void top(char input[4]) {

int cnt = 0;

if (input[0] == 'b') cnt++;

if (input[1] == 'a') cnt++;

if (input[2] == 'd') cnt++;

if (input[3] == '!') cnt++;

if (cnt >= 3) crash();

}

What would be interesting test cases?

Do you think a fuzzer could find them?

How could you find them?

10

SAGE example

Example program

void top(char input[4]) {

int cnt = 0;

if (input[0] == 'b') cnt++;

if (input[1] == 'a') cnt++;

if (input[2] == 'd') cnt++;

if (input[3] == '!') cnt++;

if (cnt >= 3) crash();

}

SAGE executes the code for some concrete input, say 'good'

It then collects path constraints for an arbitrary symbolic input of the

form i0i1i2i3

11

path contraints:

i0 ≠ 'b'

i1 ≠ 'a'

i2 ≠ 'd'

i3 ≠ '!'

i0 ≠ 'b'

i3 ≠ '!'

i0 = 'b'

i2 ≠ 'd'

i1 = 'a'

i2 = 'd'

i3 = '!'

i1 = 'a'i1 ≠ 'a' i1 ≠ 'a'

Search space for interesting inputs

Based on this one execution, combining the 4 constraints found &

their negations, yields 24 = 16 test cases

Note: the initial execution with the input ‘good’ was not very

interesting, but some of these others are

12

SAGE success

SAGE was very successful at uncovering security bugs, eg

Microsoft Security Bulletin MS07-017 aka CVE-2007-0038: Critical

Vulnerabilities in GDI Could Allow Remote Code Execution

Stack-based buffer overflow in the animated cursor code in Windows ...

allows remote attackers to execute arbitrary code … via a large length

value in the second (or later) anih block of a RIFF .ANI, cur, or .ico file,

which results in memory corruption when processing cursors, animated

cursors, and icons

Root cause: vulnerablity in parsing of RIFF .ANI, cur, and ico-formats.

NB SAGE automatically generates inputs triggering this bug

without knowing these formats

[Godefroid et al., SAGE: Whitebox Fuzzing for Security Testing, ACM Queue 2012]

[Patrice Godefroid, Fuzzing: Hack, Art, and Science, Communications of the ACM, 2020]

13

Coverage-guided evolutionary fuzzing

with afl

(American Fuzzy Lop)

14

Evolutionary Fuzzing

Use evolution:

try random input mutations, and

observe the effect on some form of coverage, and

let only the interesting mutations evolve further

where “interesting” = resulting in ‘new’ execution paths

Aka coverage-guided evolutionary greybox fuzzing,

but terminology is a bit messy/non-standard

15

alf: observing jumps to find interesting inputs/input changes

input

code

16

line instruction

1 JMP 6

2 ..

3 ..

4 ..

5 JZ (Jump If Zero) 7

6 ..

7 arraycopy (dst, input[i..j]);

8

9 ..

10 JCXZ 2

11 ..

12 ..

13 println (part of input);

14 ..

15 JNE 103131

16 ..

17 ..

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

afl bitmap shared_mem


2


3


1

afl [http://lcamtuf.coredump.cx/afl]

• Code instrumented to observe execution paths:

– if source code is available, by using modified compiler

– if source code is not available, by running code in an emulator

• Code coverage represented as a 64KB bitmap:

each control flow jumps is mapped to a change in this bitmap

– different executions could result in same bitmap, but chance is small

• Mutation strategies include: bit flips, incrementing/decrementing

integers, using pre-defined interesting values (eg. 0, -1, MAX_INT,....) or

user-supplied dictionary, deleting/combining/zeroing input blocks, ...

• The fuzzer forks the SUT to speed up the fuzzing

• Big win: no need to specify the input format, but still good coverage

17

afl’s instrumentation of compiled code

Code is injected at every branch point in the code

cur_location = <SOME_RANDOM_NUMBER_FOR_THIS_CODE_BLOCK>;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

where shared_mem is a 64 KB memory region

Intuition: for every jump from L1 to L2 a different byte in shared_mem

is changed (increased).

Which byte is determined by random values chosen at compile

time inserted at source and destination of every jump

18

19

Cool example: learning the JPG file format

Fuzzing a program that expects a JPG as input, starting with 'hello

world' as initial test input, afl can learn to produce legal JPG files

along the way producing/discovering error messages such as

– Not a JPEG file: starts with 0x68 0x65

– Not a JPEG file: starts with 0xff 0x65

– Premature end of JPEG file

– Invalid JPEG file structure: two SOI markers

– Quantization table 0x0e was not defined

and then JPGs like

[Source http://lcamtuf.blogspot.nl/2014/11/pulling-jpegs-out-of-thin-air.html]

20

Other strategies in evolutionary fuzzing

Instead of maximizing path/code coverage, we can also let inputs

evolve to maximize some other variable or property

• Code may need to instrumented to let fuzzer observe that property

Eg the x-coordinate of Super Mario

[Aschermann et al., IJON: Exploring Deep State Spaces via Fuzzing, IEEE S&P 2020]

https://www.youtube.com/watch?v=3PyhXlHDkNI
21

Conclusions

• Fuzzing is great technique to find (a certain class of) security flaws!

• If you ever write or use C(++) code, you should fuzz it.

• Challenge: getting good coverage fuzzing without too much effort

Successful approaches include

– White-box fuzzing based on symbolic execution with SAGE

– Evolutionary fuzzing aka coverage guided greybox fuzzing with afl

• Does fuzzing makes sense for code in other programming languages?

Yes, even if the kind of bugs found may have lower security impact.

• A more ambitious generation of tools not only tries to find security flaws,

but also to then build exploits, eg. angr

To read (see links on the course page)

• Section 1 of technical white paper for afl

• Patrice Godefroid, Fuzzing: Hack, Art, and Science CACM 2020

22

