
Software Security

Language-based Security:  

‘Safe’  programming languages
[Chapter 3 of  lecture notes on language-based security]

Erik Poll

1



Producing more secure code

1. You can try to produce more secure C(++) code.

Not just using SAST & DAST tools, but more importantly                                                               

by reading – or making other people read books like

• CERT secure coding guidelines for C and C++
at  http://www.securecoding.cert.org

2. More structural way to improve security:                                             

improve the programming language

– not just to prevent memory corruptions flaws, but other common 

problems too…

2



Language-based security

Security features & guarantees provided by programming language 

• safety guarantees,                                                                                                          

incl. memory-safety, type-safety, thread-safety 

There are many flavours & levels of 'safety' here.                                              
Eg. different type systems give different notions of type-safety.  

• forms of access control                                       

– visibility/access restrictions with eg.  public, private

– sandboxing mechanisms inside programming language 

• forms of information flow control

Some features depend on each other, eg

– type safety & just about anything else relies on memory safety

– sandboxing relies on memory & type safety

This week: safety. See course lecture notes, chapters 2 & 3

3



Other ways the programming language can help

A programming language can also help security by

• offering good APIs/libraries, eg.

– APIs with parametrised queries/prepared statements  for SQL

– more secure string libraries for C 

• incorporating support for 'external' languages,                                      

– eg support for SQL and HTML in Wyvern

• offering convenient language features, 

– esp. exceptions, to simplify handling error conditions

• making assurance of the security easier,  by  

– being able to understand code in a modular way

– only having to review the public interface, in a code review  

These properties require some form of safety

4



'Safe' programming languages?

You can write insecure programs in ANY programming language.

Eg

• You can forget or screw up forget input validation in any language

• Flaws in the program logic can never be ruled out 

Still...some safety features can be nice:

to prevent certain classes of bugs 

or at least mitigate their impact

5



General idea behind safety

Under which conditions does  

a[i] = (byte)b

make sense?

Two approaches

1. the programmer is responsible for ensuring these conditions

“unsafe” approach

2. the language is responsible for checking this

“safe” approach

Heated debates about th pros & cons highlight tension between 

flexibility, speed and control   vs   safety & security

But note: 

execution speed   ≠ speed of development of secure code

and maybe programmers are more expensive the CPU cycles?

6

a must  be a non-null byte array;                               

i should be a non-negative integer 

less then array length;

b should be (castable to?)  a byte



Safe programming languages

Safe programming languages

• impose some discipline or restrictions on the programmer  

• offer some abstractions to the programmer,                                     

with associated guarantees

This takes away some freedom & flexibility from the programmer,              

but hopefully extra safety and easier understanding makes it worth 

this.

7



Attempts at a general definition of safety

A programming language can be considered safe if

1. You can trust the abstractions provided by the programming 
language                                                                                                        

The programming language enforces these abstractions 

and guarantees that they cannot be broken

• Eg a boolean is either true or false, and never 23 or null

• Programmer doesn't have to care if true is represented as 

0x00 and false as 0xFF or vice versa

2. Programs have a precise & well defined semantics                    
(ie. meaning)

– More generally, leaving things UNDEFINED in any 
specification is asking for security trouble

3. You can understand the behaviour of programs in a modular
way

8



'safer' & 'unsafer' languages

more 'unsafe'                          'safe'                            even more 'safe'

Warning: this is overly simplistic, as there are many dimensions of 

safety

Functional languages such as Haskell are safe because data is 

immutable (no side-effects)

9

C

C++

machine code Java

C#

Rust

Haskell

Clean

ML

OCaml

Prolog

MISRA-C

Scala



Dimensions & levels of safety  

There are many dimensions of safety

memory-safety, type-safety, thread-safety, arithmetic safety; 

guarantees about (non)nullness, about immutability, about the

absence of aliasing,...

For each dimension, there can be many levels of safety

Eg, in increasing level of safety, going outside array bounds may:                                 

1. let an attacker inject arbitrary code 

2. possibly crash the program (or else corrupt some data)

3. definitely crash the program

4. throw an exception, which the program can catch                                          

to handle the issue gracefully

5. be ruled out at compile-time

10

'unsafe';

some undefined

semactics

'safe'



Safety: how?

Mechanisms to provide safety include

• compile time checks, eg type checking

• runtime checks, eg array bounds checks, checks for nullness, 

runtime type checks, ...

• automated memory management using a garbage collector

– so programmer does not have to free() heap-allocated data

• using an execution engine, to do the things above

– Eg the Java Virtual Machine (VM), which

• runs the bytecode verifier (bcv) to type-check code,  

• performs some runtime checks

• periodically invokes the garbage collector

11



Compiled vs interpreted code

Compiled binary runs on bare 

hardware

Any defensive measures have to be 

compiled into the code.

Execution engine (aka ‘runtime') isolates 

code from hardware

The programming language / platform 

still ‘exists’ at runtime, and the 

execution engine can provide checks at 

runtime

12

hardware

compiled

binary

high level

code

hardware

execution engine

(eg Java VM)

lower level code

(eg Java bytecode)

high level

code



Memory-safety

13



Memory-safety – two different flavours

A programming language is memory-safe if it guarantees that

1. programs can never access unallocated or de-allocated 

memory

⚫ hence also: no segmentation faults at runtime

2. maybe also: program can never access uninitialised memory

Here

1. means we could switch off OS access control to memory.                        

Assuming there are no bugs in our execution engine...

2. means we don't have to zero out memory before de-allocating 

it to avoid information leaks (within the same program).                                                                     

Again, assuming there are no bugs in our execution engine...

14



Memory safety

Unsafe language features that break memory safety

• not having array bounds checks

• allowing pointer arithmetic

• null pointers, but only if these cause undefined behaviour

15



Null pointers in C

Common (and incorrect!) folklore:                                                       

dereferencing a NULL pointer will crash the program.

But, the C standard only guarantees                                                                    

the result of dereferencing a null pointer is undefined.

So it may crash the program, but might happen

See the CERT Secure Coding guidelines for C

https://www.securecoding.cert.org/confluence/display/c/EXP34-C.+Do+not+dereference+null+pointer

for discussion of a security vulnerability in a PNG library caused by a null 

dereference that didn't crash (on ARM processors).

16



Memory safety

Unsafe language features that break memory safety

• no array bounds checks

• pointer arithmetic

• null pointers, but only if these cause undefined behaviour

• manual memory management

Manual memory management can be avoided by

1. not using the heap at all (eg in MISRA C), or 

2. automating it with a garbage collector 

1. Garbage collection first used in LISP in 1959,                                             

and went mainstream with Java in 1995

3. There are ways to automate memory management without a garbage

collection, eg. using ownership type systems, as in Rust

17



Type-safety

18



Types

• Types assert invariant properties of program elements. Eg

– This variable will always hold an integer

– This function will always return an object of class X (or one of its 

subclasses)

• This array will never store more than 10 items

NB there is a wide range of expressivity in type systems!

• Type checking verifies these assertions. This can be done 

• at compile time (static typing) or 

• at runtime (dynamic typing)

or a combination.

• Type soundness (aka type safety or strong typing) 

A language is type sound if the assertions are guaranteed to 

hold at run-time

19



Type information and – ideally - guarantees

public class Demo{

static private string greeting = "Hello";

final static int CONST = 43;

static void  Main (string[]  args){

foreach (string name in args){

Console.Writeline(sayHello(name));

}

}

public static string sayHello(string name){  

return greeting + name;

}

}

20

greeting only accessible 

in class Demo

sayHello will always return 

a string

sayHello will always be called 

with 1 parameter

of  type string

CONST will always be 43



Type-safety  

Type-safety programming language guarantees that programs that 

pass the type-checker can only manipulate data in ways allowed by 

their types

⚫ So you cannot multiply booleans, dereference an integer, take 

the square root of reference, etc.

NB: this removes lots of room for undefined behaviour

⚫ For OO languages: no “Method not found” errors at runtime

21



Combinations of memory & type safety

Programming languages can be

• memory-safe, typed, and type sound: 

– Java, C#, Rust, Go 

– though some of these have loopholes to allow unsafety 

– Functional languages such as Haskell, ML, Clean, F#

• memory-safe and untyped

– LISP, Prolog, many interpreted languages

• memory-unsafe, typed, and type-unsafe

– C, C++  

Not type sound: using pointer arithmetic in C, you can break 

any guarantees the type system could possibly make  

More generally: without any memory safety, ensuring type 

safety is impossible.

22



Example – breaking type soundness in C++

23

class DiskQuota {

private:

int MinBytes;

int MaxBytes;

};

void EvilCode(DiskQuota* quota) {

// use pointer arithmetic to access

// the quota object in any way we like!

((int*)quota)[1] = MAX_INT;

}

NB For a C(++) program we can make no guarantees whatsoever in

the presence of  untrusted code.

So

• a buffer overflow in some library can be fatal 

• in a code review we have to look at all code to make guarantees



Ruling out buffer overflows in Java or C#

Ruled out at language-level, by combination of 

• compile-time typechecking (static checks)

– or at load-time, by bytecode verifier (bcv) 

– runtime checks (dynamic checks)

What runtime checks are performed when  executing the code below?

public class A extends Super{ 

protected int[] d; 

private A next;

public A() { d = new int[3]; }

public void  m(int j) { d[0] = j; }

public setNext(Object s)

next = (A)s;

}

}

24

runtime checks for

1) non-nullness of  d, 

and 2) array bound    

runtime check for

type (down)cast  



Remaining buffer overflow issues in Java or C#

Buffer overflows can still exist, namely:

1. in native code

2. for C#, in code blocks declared as unsafe

3. through bugs in the Virtual Machine (VM) implementation, which 

is typically written in C++....

4. through bugs in the implementation of the type checker, or 

worse, bugs in the type system (unsoundness)

The VM (incl. the type checker aka byte code verifier) is part of the 

Trusted Computing Base (TCB) for memory and type-safety, 

Hence 3 & 4: bugs in this TCB can break these properties.

25



Breaking type safety?

Type safety is an extremely fragile property:                                                                               

one tiny flaw brings the whole type system crashing down 

Data values and objects are just blobs of memory. If we can create type 

confusion, by having two references with different types pointing the 

same blob of memory, then all type guarantees are gone.

• Example:  type confusion attack on Java in Netscape 3.0:  

public class A[]{ ... }

Netscape's Java execution engine confused this type  A[]                         

with the type  array of A

Root cause:  [  and ] should not be allowed in class names

So this is an input validation problem!

26

int x

char* y



to be continued...

27


