
Software Security

Secure input handling

 

Erik Poll

Digital Security

Radboud University Nijmegen

1



Most security problems are input problems, where input is passed around 

to trigger bugs or features

This always involves parsing of some format/language

 e.g. TCP/IP packets, PDF, Word, JPEG, SQL, path/file names, URLs, ...

Input problems, which involve parsing

2

input



Secure input handling

Last week: preventing input problems with

• Validation

• Sanitisation (aka encoding)

• Canonicalisation

This week: more ‘structural/foundational’ solutions to rule out 

I. Tackling buggy parsing with LangSec

II. How (not) to tackle unintended parsing - ie injection flaws

a) Input vs output sanitisation

b) Taint Tracking 

c) Safe builders

Case study: XSS

3



How encoding can complicate matters

Chrome used to crash on the URL    http://%%30%30

– %30 is the URL-encoding of the character 0 

– So %%30%30 is the URL-encoding of %00 

– %00 is the URL-encoding of  null character

– So %%30%30  is a double-encoded null character

Cause of the crash: some code/API deep inside Chrome performs a 

second URL-decoding (as well-intended ‘service’ to its client code?)            

and then other code crashes on the resulting null character. 

How could this bug have been detected or prevented?                                    

Having encoded data around makes validation harder!                                    

Double encoding is a common way to get past validation checks.

Note that encoding is the opposite of canonicalisation:                                                     

it introduces different representations of the same data.

Problem: keeping track of which data is encoded / may be decoded 

can be tricky in larger programs.  

4



I.  Tackling buggy parsing

-

using the LangSec approach

5



Buggy parsing

Here by buggy parsing we mean

1. insecure parsing  

Eg. buffer overflow in Office, PDF viewer, network stack, graphics 

library, ..   

2. incorrect parsing resulting in parser differentials,                                      

i.e. two libraries parsing the same URL in different ways 

6



Can we use input validation?

• Suppose we have a buggy PDF viewer with memory corruption 

that allows RCE.

Can we use input validation as protection?

• Yes & no: 

– we could validate a PDF file before feeding it to our PDF 

viewer, 

– but... for that we need a correct & secure PDF parser, so we 

are back to the original problem

– Still, for legacy applications it may be an improvement

7



LangSec (Language-Theoretic Security)     

• Interesting look at root causes of large class of input 

handling bugs, namely buggy parsing  

• Useful suggestions for dos and don’ts

• The ‘Lang’ in ‘LangSec’ refers to input languages,                                                        

.     not  programming languages.                                      

8

‘The science of  insecurity’

Sergey Bratus &

Meredith Patterson 

presenting LangSec at CCC 2012 



Root causes / anti-patterns

• Complex input language or format

• Sloppy definitions of this input language or format

• Hand-written parser code

• Mixing input recognition & processing in shotgun parser

9



Anti-pattern: shotgun parser

Fragments of  input penetrate deeply, and any code that touches 

these fragments may contain exploitable input bugs.

Code incrementally parses & interprets input, in a piecemeal 

fashion, chopping it up for further parsing elsewhere

Fragments passed around as unparsed byte arrays or strings

10

p
a

rs
e

r

input



LangSec concepts

• Shotgun parser: shattershot approach to parsing data in bits and 

pieces, mixing recognition (i.e. the actual parsing) & processing

• Weird machine: a buggy parser provides a strange execution 

platform that can be ‘programmed’ with malformed input

– This weird machine may even be Turing-complete (recall ROP 

programming with gadgets)

– Cool example: executing code on a x86 processor just using page 

faults, without ever executing CPU instructions                                      

[Bangert, Bratus, Shapiro, and Smith, The Page-Fault Weird Machine: Lessons in 

Instruction-less Computation, USENIX WOOT 2014]

11



LangSec principles to prevent buggy parsing  

No more hand-coded shotgun parsers, but

1. precisely defined input languages

ideally with regular expression or context-free grammar (eg EBNF)

2. generated parser code

3. complete parsing before processing

4. keep the input language simple & clear

So that bugs are less likely

So that you give minimal processing power to attackers

12



Preventing buggy parsing - the LangSec way

application

p
a

rs
e

r

LangSec approach:

• Clear & ideally formally defined input specification

• Generated parser code

• Complete parsing before processing  

rest of  the program only handles well-formed data structures 

produced by parser

input
Some C struct, 

Java/C++ object,

or error

13



LangSec in slogans

14



15



Minimise the resources & computing power that input handling 

gives to attackers

16



All parsers should be equivalent.

And parsers should be the exact inverse of the pretty printers aka 

unparsers

17



II. How (not) to prevent injection attacks 

18



How & where to prevent injection attacks?

Suppose we are worried about SQL injection via a website

• Should we validate, sanitise, or both to prevent SLQi?

• if so, where?  At point A or B?

 

We assume we know a perfect allow-list or deny-list of dangerous characters 

for SQL injection.

We ignore canonicalisation of name & address.

We ignore validation to make sure that eg. the address exists.

19

OnlineShop.nl

BA
customer 
database

- name 
- address

C



Input validation ?

Input  validation, i.e. rejecting weird characters at point A

 

Pros?

• Eliminates problem at the source root, so application only has to 

deal with ‘clean’ data  

Cons?

• We may reject legitimate inputs, eg   ’s-Hertogenbosch

20

OnlineShop.nl

BA
customer 
database



Input  sanitisation?

Input sanitisation, e.g. escaping weird characters at point A

 Eg replacing  ’ with \’

Pros?

• Eliminates problem at the source root, so application only has to 

deal with ‘harmless’ data

• We no longer reject legitimate input

Cons?

• We have some data in escaped form, \’s-Hertogenbosch and 

may need to un-escape it later

• Also, what if there are more back-end than just SQL dataset?

21

OnlineShop.nl

BA
customer 
database



  

 

Different escaping needed to prevent SQLi, XSS, path traversal, OS 

command injection, …  

Eg SQL database may be attacked with username  Bobby; DROP TABLE                    

but file system with username                  ../../etc/passwd                               

and email program with username           john@ru.nl; & rm –fr /

For most systems, it’s a fallacy to think that one  input 

sanitisation routine can solve all  injection problems

Multiple backends/APIs introduce multiple contexts

22

OnlineShop.nl

BA

customer 
database

file system

HTML renderer

email program



  

If we sanitise outputs instead of inputs then sanitisation can be 

tailored to the context:

for SQL database                   ; ’ ” DROP TABLE 

for HTML renderer                 < > & script    

for file system                          . .. / \  ~                  

for OS command                     & | ||  <  >   

OnlineShop.nl

Output sanitisation! aka output encoding 

23

B1

A

customer 
database

file system

HTML renderer

email program

B2

B3

B4



Output encoding to prevent injection attacks

We can prevent injection attacks by careful output encoding                               

- in the right place, using the right encoding function.

However, this is easy to get wrong...

More structural approaches to prevent or spot mistakes:

a) Prepared statements aka Parameterised queries

Easy to get right – as it gets rid of the problem.                                    

But... only works in simple settings

b) Tainting

Using DAST or SAST tool to spot or add missing encodings  

c) Safe Builders

Using type system to prevent missing or wrong encodings

24



a) Prepared Statements

25



Dynamic SQL vs Prepared statements 

Interface with SQL database can use 

• Dynamic SQL:                                           

      one string, which includes user input, is provided as SQL query  

                              

    "SELECT * FROM Account WHERE Username = " + $username 

                                                    + "AND Password = " + $password 

• Prepared statements aka parameterised queries: 

 a string with placeholders is provided as query,                                                      

and user inputs are provide as separate parameters

     "SELECT * FROM Account WHERE Username = ? AND Password = ?“    

$username                                                                                                 

$password   

26



Dynamic SQL & prepared statements in Java  

Code vulnerable to SQLi using dynamic SQL

  String updateString =                        

    "SELECT * FROM Account WHERE Username" 

     + username + "AND Password =" + password;                     

  stmt.executeUpdate(updateString);    

Code not  vulnerable to SQLi using prepared statements 

  PreparedStatement login = con.preparedStatement("SELECT 
* FROM Account   

          WHERE Username = ? AND Password = ?" );

  login.setString(1, username); 

  login.setString(2, password);

  login.executeUpdate();

27

bind variable



The idea behind prepared statemens

(aka parameterised queries) 

• Prepared Statements: the query is parsed first and then parameters 

are substituted later

• Dynamic SQL: parameters are substituted first and then the result is 

parsed & processed 

Key insight: we do not parse the parameters as SQL,                                                          

so the substitution becomes less dangerous 

28

SELECT ... FROM ...  WHERE ...

Accounts AND*

= =

Username Passwd$1 $2



Limitation of this approach, more generally

as general technique to prevent injection attacks

• Requires custom solution for each injection-prone API method 

– Eg for safe LDAP queries, safe XPath queries,....

• Only works for simple situations that

1. involve just one encoding function

2. involve only simple substitution patterns   

This means we cannot use it to combat XSS (more on that later)

Also, it may not be able to express some highly configurable fancy SQL 

queries

30



Prepared Statements not quite fool-proof

Prepared statements are easy to use, but not quite fool-proof

 

PreparedStatement login = con.preparedStatement      

   ("SELECT * FROM Account WHERE Username" 

     + username + "AND Password =" + password);

login.executeUpdate();

    

31



b) Tainting

32



Tainting aka Taint analysis

Core idea is to use data flow analysis: 

• we track & trace user inputs – aka tainted data

• If tainted data ends up in a dangerous API, we give a warning

• Like SAL annotations SA_Pre[Tainted=True] in PREfast, but inferred 

automatically

Such an analysis needs to know

• all  sources & sinks

• all operations that combine data and propagate taint

– eg concatenation of two strings is tainted if one of them is  

• all operations that sanitise data and remove taint

– eg SQLencoding removes taint (as far as SQLi is concerned)

Taint analysis can be done dynamically (DAST) or statically (SAST)

33



Dynamic & static taint analysis  

• Perl scripting language first introduced a taint mode in 1989

– external input are marked & tracked 

– perl execution engine aborts when tainted data is fed to 

dangerous functions

It looks like Perl 6 will remove taint mode

• Windows/Microsoft Office does taint tracking of documents 

using the Mark of the Web to then block / warn users about 

macros in tainted document

Rules have been tightened in March 2022; maybe macros attacks will 

become a thing of the past?

• Most SAST tools (incl. Fortify, discussed in SIO lecture) use 

static taint analysis to provide warnings about inputs reaching 

dangerous sinks (without being validated/encoded).

34



Tainting limitations?

• Multiple sanitisation operations, for different types of 

data/different sinks (eg SQL vs HTML), complicate matters

Accurate analysis requires different kinds of taint

• There may be many sources, many sinks and many operations 

that remove or propagate taint, or possibly propagate taint

– Missing one is easy, resulting in false negatives or positives. 

– Too much data may get tainted, resulting in unworkable 

number of false positives.

• Static taint analysis of large programs becomes complex.              

False positives or false negatives may be unavoidable.

Doing intra-procedural analysis (i.e. per method/function) 

instead of inter-procedural analysis (i.e. whole program) may 

keep things feasible, typically at the expense of precision 

35



c) Safe builders

36



Safe Builder approach

• Effectively the opposite approach to tainting:                                    

instead of tracking tainted / dangerous data,                                   

we track untainted / safe data.

• Key idea: we use type system of the programming language to 

distinguish

1. ‘trusted’ data that does not  to be encoded 

2. ‘untrusted’ data that needs to be encoded

3. data encoded for a specific context                                                                       

with a different type for each context

One special addition to conventional type systems:                                         

distinguishing compile-time constants (esp. string literals) 

Used by Google’s Trusted Types in Chrome to combat DOM-based XSS.

37



Safe builder for SQL injection  

Suppose we have an unsafe API method

void executeDynamicSQLQuery (String s)

We define a new ‘wrapper’ String type SQLquery and a function that 

executes such a wrapped string

void safeExecuteSQLQuery (SafeSQLquery s){

   executeDynamicSQLCommand(the string in  s  );

 }

We now define functions to create SafeSQLquery

1. any compiled-time constant can be turned into a SQLquery     

  SafeSQLquery create (@CompiletimeConstant String s)

2.  we can append a string to an SafeSQLquery using a function

      SafeSQLquery appendSQL (SafeSQLquery q, String s) 

    which will apply the right encoding to s  

Type system guarantees that user inputs in queries are properly escaped.  

We disallow use of the old unsafe executeDynamicSQLQuery .

38



Safe builders for several contexts

If we use string-like data in several contexts, each with their own encoding, 

we can introduce  a different String-like typesa for each, e.g.

   SafeSQLquery, SafeHTML,  SafeOSCommand, SafeFilename 

with association constructors or factory methods for each, e.g.

   SafeHTML create (@CompiletimeConstant String s)

    SafeHTML concatHTML (SafeHTML h1, SafeHTML h2) 

    SafeHTML appendHTML (SafeHTML h, String s) 

appendHTML(h,s) and appendSQL(h,s) would use different encodings for 

the parameter s

We could introduce unsafe loopholes that we evaluate by hand

         SafeHTML unsafeCreate (String s)

39



Positive vs negative security models

The choice between positive vs negative security models comes 

back in several places

• Tainting = data is 'safe' unless tainted,

Safe builders = data is 'unsafe' unless type says otherwise

• allow lists vs deny lists 

• security requirements vs attack scenario/threat

40



The messy business of preventing XSS

41



Reflected XSS attack

Attacker crafts malicious URL containing JavaScript  

     https://google.com/search?q=<script>...</script>

and tempts victim to click on this link 

Could careful web server prevent this?

Yes, by validating & rejecting and/or encoding content in query!

42

1.malicious

URL

3. HTML response containing 

<script> ... </script>

2. HTTP request with 

malicious link

victim’s

browser

server



Attacker injects HTML into a web site, eg forum posting in Brightspace,          

which is stored and echoed back later when victim visit the same site

Could careful web server prevent this?

Yes, by rejecting and/or encoding content when it is stored or retrieved

server data

base

Stored XSS attack

43

2. malicious 

input stored

3. HTTP 

request

4. malicious 

content retrieved

victim’s

browser

1. malicious 

input  

5. response with 

malicious HTML  

content 



Encoding HTML content - server-side

44

Many sites use web templating framework to generate web pages.

Below a web template for a web page with parameters written as ${...}

1 '<html>

2    <body>

3       <h1> ${name}&apos;s Blog!  </h1>

4         ${description}

5       <a href="https://ourdomain.nl/contact?user=${username}&lang=${lang}">User info for ${name} </a>

6       <b onmouseover=alert("Welcome to ${firstname}’s page")>Click here for a pop-up</b>

7    </body>

8    </html>'

Parameters – properly encoded – are filled by web server / templating engine.

How should the parameters be encoded here?



Encoding for the web - server-side  

45

'<html>

<body>

<h1> ${name}&apos;s Blog! </h1>

${description}

<a href="https://ourdomain.nl/contact?user=${username}&lang=${lang}">Contact details for ${name} </a>

<b onmouseover=alert("Welcome to ${firstname}’s page")>Click here for a pop-up</b>

</body>

</html>'

NB all these encodings can be done server-side

Getting this right is tricky!

HTML encoding (eg of  < and > )

JavaString literal encoded (eg of  ' and " )

URL encoding (eg of  ?)



Some of the encodings for the web  

• HTML encoding 

      < > & ” ’  replaced by    &gt; lt; &amp; &quot &#39

Complication: encoding of attribute inside HTML tag may be different  

• URL encoding aka %-encoding 

   / ? = % #  replaced by   %2F %3F %3D %25 %23 

       space  replaced by    %20 or +

Try this out with e.g.  https://duckduckgo.com/?q=%2F+%3F%3D

Complication: encoding for query segment different than for initial part, 
eg for / aka %2F

• JavaScript string literal encoding

           ’  replaced by    \’  

     Eg ’this is a JS string with a \’ in the middle’

Complication: JavaScript allows both ' and "  for strings

• CSS encoding

• ...

 

46



Context-sensitive auto-escaping web template engines try to figure 

out & insert the right encodings.

E.g. Google Closure Templates, using context & encodings below

Many template engines are not context sensitive, and hence insecure!

Context-sensitive auto-escaping  

47

[Samuel, Saxena, and Song, Context-sensitive auto-sanitization in web 

templating languages using type qualifiers, CCS 2017]

contexts (type qualifiers)  

encodings inserted



Extra complication: the DOM API

48

JavaScript inside a web page can dynamically alter that web page                       

using the DOM API (or do other interactions with other Web APIs)

<html>   <body>

<h1 id=title> ${name}&apos;s Blog  </h1> 

...

<script> let newName = getSomeData(); 

                    document.getElementById("title") .innerHTML  =  newName + "&apos;s Blog!";

<script> 

</body>   </html>

Spot the XSS!

       A malicious newName could be Eve</h1><script someAttackScript();</script> //

If newName is untrusted user input, it needs to be encoded, by the JS code: 

                    document.getElementById("title").innerHTML  =  htmlEscape(newName) + "&apos;s Blog!"

DOM API methods & fields

to inspect & alter the web page



DOM-based XSS attacks

JavaScript code in a webpage is fed some malicious input (client-

side!) and uses that input to change the webpage (client-side!)

Input can come 1) via local user input, 2) as parameters in the URL, 

3) from the server (as in stored XSS), 4) from another web server,...

Server cannot validate or encode such inputs! (Except in case 3?)           

It has to be done by JS code inside the web page.

49

HTML renderer

JS engine

f(bad)

bad page.html

page.html

web

server

bad.html

f.js


	Slide 1: Software Security  Secure input handling  
	Slide 2: Input problems, which involve parsing
	Slide 3: Secure input handling
	Slide 4:  How encoding can complicate matters
	Slide 5:  I.  Tackling buggy parsing - using the LangSec approach
	Slide 6: Buggy parsing
	Slide 7: Can we use input validation?
	Slide 8: LangSec (Language-Theoretic Security)     
	Slide 9: Root causes / anti-patterns
	Slide 10: Anti-pattern: shotgun parser
	Slide 11: LangSec concepts
	Slide 12: LangSec principles to prevent buggy parsing  
	Slide 13: Preventing buggy parsing - the LangSec way
	Slide 14: LangSec in slogans
	Slide 15
	Slide 16:  
	Slide 17:  
	Slide 18: II. How (not) to prevent injection attacks 
	Slide 19: How & where to prevent injection attacks?
	Slide 20: Input validation ?
	Slide 21: Input  sanitisation?
	Slide 22: Multiple backends/APIs introduce multiple contexts 
	Slide 23: Output  sanitisation! aka output encoding 
	Slide 24: Output encoding to prevent injection attacks
	Slide 25: a) Prepared Statements
	Slide 26: Dynamic SQL vs Prepared statements 
	Slide 27: Dynamic SQL & prepared statements in Java   
	Slide 28: The idea behind prepared statemens (aka parameterised queries) 
	Slide 30: Limitation of this approach, more generally
	Slide 31: Prepared Statements not quite fool-proof
	Slide 32: b) Tainting
	Slide 33: Tainting aka Taint analysis
	Slide 34: Dynamic & static taint analysis  
	Slide 35: Tainting limitations?
	Slide 36: c) Safe builders
	Slide 37:  Safe Builder approach
	Slide 38: Safe builder for SQL injection  
	Slide 39: Safe builders for several contexts
	Slide 40: Positive vs negative security models
	Slide 41: The messy business of preventing XSS  
	Slide 42: Reflected XSS attack
	Slide 43: Stored XSS attack
	Slide 44: Encoding HTML content - server-side
	Slide 45: Encoding for the web - server-side  
	Slide 46: Some of the encodings for the web  
	Slide 47: Context-sensitive auto-escaping  
	Slide 48: Extra complication: the DOM API
	Slide 49: DOM-based XSS attacks

