
Software Security

(All?) other kinds of problems

Erik Poll
Digital Security

Radboud University Nijmegen

1

2

design flaws

implementation

flaws

abuse of
features
(eg spam)

memory corruption

feature
interaction

integer
overflow

buffer
overflow

injection attacks

memory
leaks

double
free

dangling
pointer

SQLi

TOCTOU/
race conditions

weak / flawed

authentication

supply chain
weakness

hardcoded
secrets

use of broken /
misconfigured
components

error handlingCSRFno 2FA

HTML
injection

XSS

broken
access
control

Not to scale!

Very

incomplete!

Vague

boundaries,

overlaps &

combinations

format
string

phishing
vulnerabilities

flawed
program logic

leaked
credentials

3

design flaws

implementation

flaws

abuse of
features
(eg spam)

memory corruption

feature
interaction

integer
overflow

buffer
overflow

injection attacks

memory
leaks

double
free

dangling
pointer

SQLi

weak / flawed

authentication

supply chain
weakness

use of broken /
misconfigured
components

error handlingCSRFno 2FA

HTML
injection

XSS

Not to scale!

Very

incomplete!

Vague

boundaries,

overlaps &

combinations

format
string

phishing
vulnerabilities

flawed
program logic

buggy

parsing

unintended

parsing

leaked
credentials

hardcoded
secrets

TOCTOU/
race conditions

broken
access
control

Access Control

Access control - basic concepts

• Access control consists of two steps

1. authentication - checking who you are

2. authorisation - enforcing what you are allowed to do

Often when people say 'access control' they just mean 2.

• Access control, more specifically authorisation, is

configured by means of a policy

Where can we expect problems?

5

Problems with access control

Where can we expect problems?

• Authentication can be weak or broken

incl. stealing credentials

• Authorisation can be misconfigured

esp. if policies are complex

• Access control may be missing / circumventable

6

Insecure Direct Object Reference (IDOR)

Typical scenario

1. User U requests some resource R (e.g. a file, webpage)

2. Access control system checks if user is allows to access

3. If so, user is given a reference to the resource

eg https://brightspace.ru.nl/lms/dropbox/admin/folders_manage.d2l?ou=331358.pdf

What could be a potential access control problem?

• Is access control check repeated when the link is used?

• What if the user changes the link, to 331359.pdf, 331360.pdf, ...

• What if the user passes on this reference to someone else?

Insecure direct object reference: users are provided a direct

reference to some object after access control check, but access

control check is not repeated when they use that reference.

Note: this looks a lot like path tranversal.

7

The confused deputy problem

A less privilege user/process A asks a more privileged user/process

B to do something

A B

If B does that with its access rights, A can by-pass access control.

This is an input handling problem,

but also an access control or privilege escalation problem

Many input handling & access control problems involve a confused

deputy.

Phishing also involves a confused deputy!

8

CSRF (Cross Site Request Forgery)

Suppose a bank transfer on bank.com is done with a simple click of

Then attackers can create malicious links

<a href=”https://bank.com/transferMoney?amount=1000

&toAccount=52.12.57.762”>

and insert such links on mafia.com or in HTML-formatted email.

If browser follow such links, attaching its cookie for bank.com ,
we have an CSRF attack.

Note: CSRF is an instance of a confused deputy attack.

CSRF is uncommon these days, as most websites use more robust session
management solutions than just an authentication cookie.

websec
9

Authentication solutions

1. Authentication of humans by computers

– passwords, PIN codes, biometrics (fingerprint, face),

smartcards & other hardware tokens, MFA, ...

2. Authentication of computers by computers
(or computer applications)

– cryptography (symmetric; or asymmetric, maybe using

certificates & PKI), Kerberos tickets, SMB pass the hash,

API keys, ...

3. Authentication of computer applications by humans

– People often forget about this!

– URLs, info provided by browsers, applications, app stores, ...

– Phishing attacks this form of (usually weak) authentication

• Phishing is a software design flaw !

10

Problems in authenticating apps by humans

11

Is this a phishing website?

12

Phishing

Phishing overtook exploit-based malware problems in 2016

[source: Google Transparency report]

Phishing vs malware internet banking fraud

Internet banking fraud in the Netherlands (in million of euros)
[Source: Betaalvereniging]

Non-atomic check and use

aka

TOCTOU (Time of Check, Time of Use)

or

Race conditions

Race condition

• Two concurrent execution threads both execute the statement

x = x+1;

where x initially has the value 0.

• What is the value of x in the end?

Answer: x can have the value 2 or 1

• Worse still, in some languages, eg. Java, it can have an arbitrary

value

• The root cause of the problem is that x = x+1 is not an atomic

operation, but happens in two steps, reading x and assigning

the new value, which may be interleaved in unexpected ways

• Why can this lead to security problems?

• Think of internet banking, and running two simultaneous

sessions with the same bank account… Do try this at home! ☺

16

A classic source of (security) problems

• Race condition aka data race is a common type of bug in

concurrent programs

• Basically: two execution threads mess with the same data or

object (program variable, file, ...) at the same time

• Not necessarily a security bug, but it can be...

• Non-atomic check and use

 aka TOCTOU (Time Of Check, Time of Use)

is a closely related type of security flaw

Problem: some precondition required for an action is

invalidated between the time it is checked and the time the

action is performed

• Typically, this precondition is access control condition

• Typically, it involves some concurrency

17

Classic UNIX race condition

lpr –r

• Print utility with –r option to remove file after printing

• Could be used to delete arbitrary files

How?

1. User executes lpr –r symlink

where symlink is a symbolic link

2. OS checks that user has permission to read & delete this file

3. While the file is printing move the link is moved, eg to
/etc/passwd

4. after printing lpr,which has root permission, deletes
/etc/passwd

Root of the problem: time between check (2) and use (4)

18

Learning from past mistakes?

lpr –r is a classic security flaw from the 1970s, but similar flaws
happen decades later

CVE-2003-1073
A race condition in the at command for Solaris 2.6 through 9
allows local users to delete arbitrary files via the -r argument
with .. sequences in the job name, then modifying the directory
structure after at checks permissions to delete the file and
before the deletion actually takes place

 Combination of race condition with failure to check that file
names do not contain ..

19

Another classic: mkdir on Unix

• mkdir creates a new directory/folder

• This program executes as root

• in Linux terminology, it is setuid root

• It creates new directory non-atomically, in several steps:

1. enter super-user mode

2. creates the directory, with owner is root

3. sets the owner, to whoever invoked mkdir

4. exit super-user mode

• Attack: by creating a symbolic link between steps 2 and 3,

attacker can own any file

20

Example race condition

const char *filename="/tmp/erik";

if (access(filename, R_OK)!=0) {

... // handle error and exit;

}

// file exists and we have access

int fd open (filename, O_RDONLY);

...

Between calls to access and open the file might be removed, or a

symbolic link in the path might be reset!

21

Race condition & file systems

Interaction with the file system is common source of TOCTOU issues

Signs of trouble:

• Access to files using filenames rather than file handles or file

descriptors

– filenames may point to different files at different moments in time

• Creating files or directories in publicly accessible places, for
instance /tmp

– especially if these have predictable file names

22

Spot the race condition!

public class SimpleServlet extends HttpServlet {

 private String query;

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 try { Connection conn =

 DriverManager.getConnection("jdbc:odbc ... ");

 query = "INSERT INTO roles" + "(userId, userRole)" + "VALUES " + "('" +

 request.getParameter("userId") + "'," +

 "'standard')";

 Statement stmt = conn.createStatement();

 stmt.executeUpdate(query);

 } catch ...

 }

23

Spot the race condition!

public class SimpleServlet extends HttpServlet {

 private String query;

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 try { Connection conn =

 DriverManager.getConnection("jdbc:odbc ... ");

 query = "INSERT INTO roles" + "(userId, userRole)" + "VALUES " + "('" +

 request.getParameter("userId") + "'," +

 "'standard')";

 Statement stmt = conn.createStatement();

 stmt.executeUpdate(query);

 } catch ...

 }

24

Concurrent calls of doGet will

act on the same Servlet object

and hence use the same

instance field query

Fix: now every (possibly

concurrent) call of doGet
has its own query field

Spot the race condition!

public class SimpleServlet extends HttpServlet {

 private String query;

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String query;

 try { Connection conn =

 DriverManager.getConnection("jdbc:odbc ... ");

 query = "INSERT INTO roles" + "(userId, userRole)" + "VALUES " + "('" +

 request.getParameter("userId") + "'," +

 "'standard')";

 Statement stmt = conn.createStatement();

 stmt.executeUpdate(query);

 } catch ...

 }

25

• dasd

Edge & Safari GUI bug [CVE-2018-8383]

URL in address bar can be spoofed with a race condition:

JavaScript code loads legitimate page; changes address bar,

but over non-existent port; and then quickly loads another page

https://www.theregister.co.uk/2018/09/11/safari_edge_spoofing/

https://youtu.be/Ni2XzF5-ixY

https://youtu.be/dGJSsK55nfQ

Spot the security flaw!

char[] pwd;

check_password(char[] guess) {

 for (int i=0; i++; i < guess.length {

 if (pwd[i] != guess[i]) {return false;}

 return true;

}

char[] pwd;

check_password(char[] guess) {

 for (int i=0; i++; i < pwd.length {

 if (pwd[i] != guess[i]) {return false;}

 return true;

}

Spot the second security flaw!

char[] pwd;

check_password(char[] guess) {

 for (int i=0; i++; i < pwd.length {

 if (pwd[i] != guess[i]) {return false;}

 return true;

}

Timing is a side channel here that leaks information,

namely how many characters you got right!

Information Leakage

(incl. side-channel attacks)

Information Leakage

• Fancy examplse: side-channel attacks

timing, power analysis, EM-radiation, TEMPEST, ..

– esp. for crypto keys!

– since advent of micro-architectural attacks like Spectre & Meltdown

a bigger concern for mainstream processors

More about in the courses: Physical Attacks on Secure Systems, Selected topics

on hardware for security, Engineering Cryptographic Software

• Simple examples: errors

– Error messages as notorious for leaking information

– Sometimes just the fact that an error is produced (recall

blind SQL injection), but error messages can leak more info

33

Error reported

by our old

course scheduling

webpage

Error trace of our institute's old online diary

Database error: Invalid SQL: (SELECT
egw_cal_repeats.*,egw_cal.*,cal_start,cal_end,cal_recur_date FROM egw_cal
JOIN egw_cal_dates ON egw_cal.cal_id=egw_cal_dates.cal_id JOIN
egw_cal_user ON egw_cal.cal_id=egw_cal_user.cal_id LEFT JOIN
egw_cal_repeats ON egw_cal.cal_id=egw_cal_repeats.cal_id WHERE
(cal_user_type='u' AND cal_user_id IN (56,-135,-2,-40,-160)) AND cal_status != 'R'
AND 1225062000 < cal_end AND cal_start < 1228082400 AND recur_type IS NULL
AND cal_recur_date=0) UNION (SELECT
egw_cal_repeats.*,egw_cal.*,cal_start,cal_end,cal_recur_date FROM egw_cal
JOIN egw_cal_dates ON egw_cal.cal_id=egw_cal_dates.cal_id JOIN egw_cal_user
ON egw_cal.cal_id=egw_cal_user.cal_id LEFT JOIN egw_cal_repeats ON
egw_cal.cal_id=egw_cal_repeats.cal_id WHERE (cal_user_type='u' AND
cal_user_id IN (56,-135,-2,-40,-160)) AND cal_status != 'R' AND 1225062000 <
cal_end AND cal_start < 1228082400 AND cal_recur_date=cal_start) ORDER BY
cal_start mysql

Error: 1 (Can't create/write to file '/var/tmp/#sql_322_0.MYI'
File: /vol/www/egw/web-docs/egroupware/calendar/inc/class.socal.inc.php
...
Session halted.

34

Moral of the story

Informative error messages are great for debugging ☺

But: informative error messages can also help attackers 

Did we cover most security problems?

The CWE Top 25

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

37

Memory corruption

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

38

Injection attacks

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

39

Access control? (authentication + authorisation)

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Site Request Forgery

(SSRF)

25. Command Injection

memory corruption, injection attacks, access control / authentication

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

	Slide 1: Software Security (All?) other kinds of problems
	Slide 2
	Slide 3
	Slide 4: Access Control
	Slide 5: Access control - basic concepts
	Slide 6: Problems with access control
	Slide 7: Insecure Direct Object Reference (IDOR)
	Slide 8: The confused deputy problem
	Slide 9: CSRF (Cross Site Request Forgery)
	Slide 10: Authentication solutions
	Slide 11: Problems in authenticating apps by humans
	Slide 12: Is this a phishing website?
	Slide 13: Phishing
	Slide 14: Phishing vs malware internet banking fraud
	Slide 15: Non-atomic check and use aka TOCTOU (Time of Check, Time of Use) or Race conditions
	Slide 16: Race condition
	Slide 17: A classic source of (security) problems
	Slide 18: Classic UNIX race condition
	Slide 19: Learning from past mistakes?
	Slide 20: Another classic: mkdir on Unix
	Slide 21: Example race condition
	Slide 22: Race condition & file systems
	Slide 23: Spot the race condition!
	Slide 24: Spot the race condition!
	Slide 25: Spot the race condition!
	Slide 26
	Slide 27: Edge & Safari GUI bug [CVE-2018-8383]
	Slide 28:
	Slide 29:
	Slide 30:
	Slide 31: Information Leakage (incl. side-channel attacks)
	Slide 32: Information Leakage
	Slide 33: Error reported by our old course scheduling webpage
	Slide 34: Error trace of our institute's old online diary
	Slide 35: Moral of the story
	Slide 36: Did we cover most security problems?
	Slide 37: The CWE Top 25
	Slide 38: Memory corruption
	Slide 39: Injection attacks
	Slide 40: Access control? (authentication + authorisation)
	Slide 41: memory corruption, injection attacks, access control / authentication

