
Software Security

Secure input handling

-

DOM-based XSS

Erik Poll

Digital Security

Radboud University Nijmegen

1

Contexts & encoding for the web

2

'<html>

<body>

<h1> ${name}'s Blog! </h1>

${description}

Contact details for ${name}

<b onmouseover=alert("Welcome to ${firstname}’s page")>Click here for a pop-up

</body>

</html>'

Getting encodings right is tricky and depends on the context

HTML encoding (eg of < and >)

JavaString literal encoded (eg of ' and ")

URL encoding (eg of ?)

Extra complication: the DOM API

3

JavaScript inside a web page can dynamically alter that web page

using the DOM API (or do other interactions with other Web APIs)

<html> <body>

<h1 id=title> ${name}'s Blog </h1>

...

<script> let newName = getSomeData();

 document.getElementById("title") .innerHTML = newName + "'s Blog!";

<script>

</body> </html>

Spot the XSS!

 A malicious newName could be Eve</h1><script someAttackScript();</script> //

If newName is untrusted user input, it needs to be encoded, by the JS code:

 document.getElementById("title").innerHTML = htmlEscape(newName) + "'s Blog!"

DOM API methods & fields

to inspect & alter the web page

DOM-based XSS attacks

JavaScript code in a webpage is fed some malicious input (client-

side!) and uses that input to change the webpage (client-side!)

Input can come 1) via local user input, 2) as parameters in the URL,

3) from the server (as in stored XSS), 4) from another web server, ...

Server cannot validate or encode such inputs! (Except in case 3?)

It has to be done by JS code inside the web page.

4

HTML renderer

JS engine

f(bad)

bad page.html

page.html

web

server

bad.html

f.js

Escaping inside JavaScript

Suppose JavaScript code modifies an HTML element elem to show a user-

supplied name that executes JS code createAlbum('name') when clicked, i.e.

 name

Insecure JS code to do this

 elem.innerHTML = '' + name + '';

Spot the XSS bug!

A malicious name to insert ' '; someAttackScript(); //

How to escape name for the two different contexts here?

 var escapedName = goog.string.htmlEscape(name); // HTML-encoding

 var jsEscapedName = goog.string.escapeString(escapedName); // JS string literal encoding

 elem.innerHTML = '' + escapedName + '';

Spot the XSS bug!

5

Spot the XSS bug!

var escapedName = goog.string.htmlEscape(name); // HTML-encoding

 var jsEscapedName = goog.string.escapeString(escapedName); // JS string literal encoding

 elem.innerHTML = '' + escapedName + '';

Attack: enter malicious name ');attackScript();//

HTML-escaped this becomes ');attackScript();//

JS-escaped this remains ');attackScript();//

So innerHTML becomes

');attackScript();//

The browser HTML-unescapes value of onclick attribute before evaluation as JS

 createAlbum(' ');attackScript();//')

so attackScript(); will be executed

6

[Example from Christoph Kern, Securing the Tangled Web, CACM 2014]

Preventing DOM-based XSS

Moral of the story: writing JavaScript code that properly validates

and encodes user input is hard!

Modern web pages use a LOT of client side JS code, using large

libraries, to provide fancy webpages

The DOM API methods take strings as arguments, but for these

strings it is hard to trace

• where they come from? (are they user input?)

• have they been validated? if so, how exactly?

• have been encoded? and if so, how exactly?

Here we can use the safe builder approach!

7

API hardening for the DOM API (aka Trusted Types)

Safe builder approach for JavaScript & DOM API

• use TypeScript rather than JavaScript

• use different types instead of just String,

e.g. TrustedHtml, TrustedJavaScript, TrustedUrl, TrustedScriptUrl …

• replace string-based DOM API with new typed API where

operations take the right 'safe' type as parameter

– eg innerHTML takes TrustedHtml instead of a String

• Typing guarantees proper escaping & validation ☺

– This is checked statically

• DOM API must be replaced & all JS code needs to be rewritten

 but ... this can be done incrementally, using old & new APIs side by side

[https://github.com/WICG/trusted-types]

[Released as a Chrome browser feature in 2019

 https://developers.google.com/web/updates/2019/02/trusted-types]

8

Custom tweaks

The Trusted Types / API hardening approach can be

customised/extended to specific application:

For example, Brightspace allows a restricted set of HTML tags

in forum postings.

To do this we would introduce

1. introduce a custom type, SafeForumPosting

2. specify which functions require input of this type

3. define custom operations to generate data of this type,

with built-in validation and/or encoding.

This code should be rigorously reviewed to make sure it is

bullet-proof!

9

Yet another complication: different kind of URLs

10

Suppose we let users add a link to jump to their homepage on another website

<html> <body>

<h1> ${name} 's Blog! </h1>

${description}

...

<script> function goHome() { window.location.href = ${homeUrl} ;} </script>

<button type="button" onclick="goHome()">Click here to go to ${name} 's home page!</button>

...

Spot the XSS, if we allow users to specify any ${homeUrl}

Browsers support pseudo URLs starting with javascript:, e.g. javascript:alert('Hi!').

Assigning such a URL to location.href will execute the script!

User-supplied URLs have to be validated to check for javascript: URLs:

• server-side or, if it’s passed around in JS, client-side in JS code

The Trusted Types API uses special type TrustedResourceUrl for sinks, such as

location.href, where (pseudo) URLs can trigger execution of scripts

Recap: Why XSS is so tricky to prevent

• Many sources & sinks, with complex data flows between them

• Many different types of data

URLs, URL parameters, javascript: pseudo URLs,

(snippets of) HTML and JavaScript, JavaScript strings, CSS, …

with different trust levels, eg

HTML with scripts that we trust,

unsafe HTML possibly with scripts,

safe HTML without scripts,

links that we trust even in places where they might trigger scripts, links

that we trust except in places where they might trigger scripts,

 ...

and different association forms of encoding and validation, eg

HTML-encoding, JavaString-literal encoding, URLs validated not to start

with javascript:, ...

that can be done server-side or client-side

11

Conclusions

12

Languages & Parsing

• Parsing of many languages (formats, representations, ...)

is where the input problems happen, due to

– insecure parsing

– incorrect parsing, i.e. parsing differentials

– unintended parsing, i.e. injection attacks

especially if languages are complex, poorly defined, and

very expressive

• LangSec approach can prevent buggy parsing

which can be insecure parsing or incorrect parsing

• Safe builder approach, which generalises parameterised

queries, can prevent injection attacks

13

Lack of input validation?

Beware of people talking about ‘lack of input validation’

• Do they really mean rejecting invalid inputs or do they

actually mean encoding/escaping/sanitising them?

– If so, output encoding makes more sense than input
encoding, because it depends on context

– Ideally, don't validate but parse

– Ideally, use ‘safe’ APIs that are immune to injection

and/or us types to enforce proper encoding & validation

14

Pattern: Use Types!

Types can record & ensure different aspects of data

1. language/format

2. origin of data, and hence the trust we have in it

– special mention: compile-time constants

This can track & make explicit if data

• validated or not, and how exactly?

• encoded or not, and how exactly?

Overall aim: preventing ambiguity & confusion

15

Anti-pattern: string concatenation

Standard recipe for security disaster:

1. concatenate several pieces of data, some user input,

2. pass the result to some API

Note: string concatenation is inverse of parsing

16

Anti-pattern: strings

The use of strings in a warning sign

not just String but also char*, char[], StringBuilder, ...

Strings are useful, because you use them to represent many things:

 eg. username, file name, email address, URL, HTML, …

This also make strings dangerous:

1. Strings are unstructured data that still needs to be parsed

2. The same string may be handled & interpreted in many

– possibly unexpected – ways

3. Strings may or may not be validated or encoded, ...

4. A single string parameter in an API call often hides

an expressive & powerful language

17

To read

• Wang et al., If It's Not Secure, It Should Not Compile: Preventing DOM-

Based XSS in Large-Scale Web Development with API Hardening,

ICSE'21, ACM/IEEE, 2021

• Lectures notes on Secure Input Handling

18

	Slide 1: Software Security Secure input handling - DOM-based XSS
	Slide 2: Contexts & encoding for the web
	Slide 3: Extra complication: the DOM API
	Slide 4: DOM-based XSS attacks
	Slide 5: Escaping inside JavaScript
	Slide 6: Spot the XSS bug!
	Slide 7: Preventing DOM-based XSS
	Slide 8: API hardening for the DOM API (aka Trusted Types)
	Slide 9: Custom tweaks
	Slide 10: Yet another complication: different kind of URLs
	Slide 11: Recap: Why XSS is so tricky to prevent
	Slide 12: Conclusions
	Slide 13: Languages & Parsing
	Slide 14: Lack of input validation?
	Slide 15: Pattern: Use Types!
	Slide 16: Anti-pattern: string concatenation
	Slide 17: Anti-pattern: strings
	Slide 18: To read

