
Software Security

Secure INPUT handling

Erik Poll

Digital Security

Radboud University Nijmegen

1



Recap: most flaws are input handling flaws

2

1. Out-of-bounds Write

 (CWE-787)

2. Cross Site Scripting (XSS)                   

(CWE-79)

4. Use After Free 

(CWE-416)

6. Improper Input Validation

 (CWE-20)

7. Out-of-bounds Read

 (CWE-125)

3. SQL injection

 (CWE-89)

8. Path Traversal

 (CWE-22)

9. Client-Side Request Forgery (CSRF)  

(CWE-352)

5. OS Command Injection

 (CWE-78)

10. Unrestricted Upload of Dangerous 

File Type (CWE-434)

11. Missing Authorization

 (CWE-862)

13. Improper Authentication

 (CWE-287)

14. Integer Overflow or Wraparound 

(CWE-190)

15. Deserialization of Untrusted Data

 (CWE-502)

12. NULL Pointer Deference

 (CWE-476)

16. Command Injection

 (CWE-77)

17. Improper Restriction of Operations 

on Memory Buffer Bounds (CWE-119)

18. Hardcoded Credentials 

(CWE-798)

19. Server-Side Request Forgery (CWE-

918)

21. Race Condition 

(CWE-362)

22. Improper Privilege Management

 (CWE-269)

23. Code Injection

(CWE-94)

20. Missing Authentication

 (CWE-306)

24. Incorrect Authorization

 (CWE-863)

25. Incorrect Default Permissions           

(CWE-276)

Input problems dominate Top N lists,  

                                                     esp. memory corruption  &  injection attacks 

Most common other kinds: access control flaws  

CWE Top 25 (2023 edition) 



Two types of input problems: bugs vs features

3

(abuse of) 

a feature !
2. Injection  attacks

back-end 

service

malicious

input

eg SQL

query

application

application
malicious

input

a bug !
1. Buggy,  insecure parsing    

eg buffer overflow 

in PDF viewer



Two types of input problems: bugs vs features

4

(abuse of) 

a feature !

back-end 

service

malicious

input application

application
malicious

input

a bug !

eg buffer overflow 

in PDF viewer

eg SQL

query

1. Buggy,  insecure parsing    

2.  Correct, but unintended parsing   



Why so many & so many different kinds?

5

Ethernet

TCP/IP

HTTP

TLS

Ethernet

TCP/IP

HTTP

TLS

Web

server

database

OS  

file system

Big attack surface in application, the underlying protocol stack,  

and external services.



Why so many & so many different kinds?

• Many input languages 

incl. data formats (URLs, filenames, email addresses, X509, ...) 

protocols (eg. in network stack: 4G, Bluetooth, TCP/IP, Wifi, HTTP(S), ...) 

file formats (Word, PDF, HTML, audio/video formats, JSON, XML,  ...) 

script/programming languages (SQL, OS commands, JavaScript, ...) 

...

• Complex input languages and formats 

eg. look at https://html.spec.whatwg.org for HTML or                            

https://url.spec.whatwg.org and https://www.rfc-editor.org/rfc/rfc3987 for 

URLs

• Sloppy definitions of input languages and formats 

• Expressive languages and formats  

eg. macros in Office formats, SMB  protocol  for Windows file names, 
JavaScript  in HTML & PDF, eval()in programming languages, ...

Some of these factors also explain the success of fuzzing.

6



Audience poll

How should you defend against input problems?

Possibly by input validation

Probably NOT by input sanitisation

It’s a common mistake to think that input validation and input 

sanitisation are the best or only defences ! 

It’s also a common mistake to confuse sanitisation & 

validation!

7



Preventing input handling problems

I. Basic protection primitives: 

       Validation, Sanitisation, Canonicalisation

II. Tackling buggy parsing with LangSec

III. How (not) to tackle unintended parsing - ie injection flaws

a) Input vs output sanitisation

b) Taint Tracking 

c) Safe builders

Case study: XSS

8



I. The three basic protection mechanisms

a) Canonicalisation 

b) Validation

c) Sanitisation

9



1. Canonicalisation: normalise inputs to canonical form

    E.g.  convert  10-31-2021  to  31/10/2021  

                               www.ru.nl/  to  www.ru.nl

             J.Smith@Gmail.com to jsmith@gmail.com 

2.  Validation: reject  ‘invalid’ inputs

    E.g. reject  Nov 32nd 2024  or  negative amounts

3. Sanitisation: fix  ‘dangerous’ inputs  

   E.g.  convert  <script> to &lt;script&gt; 

           Many synonyms: escaping, encoding, filtering, neutralising, ... 

Invalid inputs could be fixed instead of rejected as part of validation.

Which of these operations should be done first?

Canonicalisation, Validation, Sanitisation

10

Beware: 
  Often confused !
  Sometimes  
 combined ! 



a)   Canonicalisation (aka Normalisation)

There may be many ways to write the same thing, eg.                      

• upper or lowercase letters   eg    s123456 vs S123456

• trailing spaces eg   s123456  vs s123456

• trailing / in a domain name, eg  www.ru.nl/

• trailing . in a domain name, eg  www.ru.nl.

• ignored characters or sub-strings, eg in email addresses:  

name+redundantstring@bla.com

• ..  .  ~ in path names

• file URLs file://127.0.0.1/c|WINDOWS/clock.avi

• using either / or \ in a URL on Windows  

• Unicode encoding                 eg  / encoded as  \u002f

Beware: some forms of encoding are not meant as form of sanitisation

11



a)  Canonicalisation

• Data should always be put into canonical form                            

before any further processing, esp.

– before validation

– before using the data in  security decisions

• But: the canonicalisation operation itself may be abused,                         

for instance to waste CPU cycles or memory

– eg with a zip bomb of XML bomb

(Btw: a docx file is a zip file!)

12



b)  Validation

Many possible forms of patterns for validations

• Eg. for numbers:

– positive, negative, max. value, possible range?

– Luhn mod 10 check for credit card numbers

• Eg. for strings: 

– (dis)allowed characters or words

– More precise: regular expressions or context-free grammars

• Eg for  RU student number (s followed by 6 digits),   valid email 

address, URL, …

Unfortunately, regular expressions and context-free grammars are not 

expressive enough for many complex input formats (eg email address, JPG, 

PDF,...)  

13



b) Validation techniques

• Indirect selection 

– Let user choose from a set of legitimate inputs;                                                        

User input never used directly by the application 

– Most secure, but cannot be used in all situations;                                  

also, attacker may be able to by-pass the user interface to 

still enter invalid data, eg by messing with HTTP traffic

• Allow-listing (aka white-listing)

– List valid patterns; accept input if it matches

– Instance of a positive security model

• Deny-listing (aka black-listing)

– List invalid  patterns; reject input if  it matches

– Least secure, given the big risk that some dangerous 

patterns are overlooked

– Instance of a negative security model

14



c) Sanitisation aka encoding

Commonly applied to prevent injection attacks, eg.

• replacing ″ by  \″ to prevent SQL injection, aka escaping

• replacing < > by &lt &gt to prevent HTML injection & XSS

• replacing script by xxxx to prevent XSS

• putting quotes around an input, aka quoting

• removing dangerous characters or words, aka filtering

NB after sanitising, changed input may need to be re-validated

As for validation, we can use allow-lists or deny-lists for replacing or 

removing characters & keywords

15



Validation patterns can get  COMPLEX

A regular expression to validate email adressess

See http://emailregex.com  for code samples in various languages

Or read RFCs 821, 822, 1035, 1123, 2821, 2822, 3696, 4291, 5321, 5322, and

5952 and try yourself!

16



Parse, don’t validate!

If input validation requires  parsing,  then parse & don’t just validate!

Eg instead of having a validation function

         boolean isValidURL(String s)

we could have a parsing function

 URL createURL(String s) throws InvalidURLException

which returns some datatype URL (eg. an object, record, or struct) that comes 

with relevant operations (eg. to extract domain, protocol).

Advantages of parsing?  Disadvantages?

• You cannot forget validation, as then code won’t type check ☺

• No duplication of parsing code ☺ -  in validation & subsequent parsing.

• More work, at least initially, to define all these types such as URL           

Though maintenance should be easier...

17



Spot the defect  

char buf1[MAX_SIZE], buf2[MAX_SIZE];

// make sure url is valid URL and fits in buf1 and buf2:

     if (!isValid(url)) return;

     if (strlen(url) > MAX_SIZE – 1) return;

// copy url excluding spaces, up to first separator, ie. first ’/’, into buf1

     out = buf1;

     do { // skip spaces  

       if (*url != ’  ’) *out++ = *url;

     } while (*url++ != ’/’);

     strcpy(buf2, buf1);

[Code sample from presentation by Jon Pincus]

Loop fails to

terminate flaw for

URLs without /   

Exploited by

Blaster worm 

18



Parse, don't validate?

char buf1[MAX_SIZE], buf2[MAX_SIZE];

// make sure url is valid URL and fits in buf1 and buf2:

if (!isValid(url)) return;

     if (strlen(url) > MAX_SIZE – 1) return;

// copy url excluding spaces, up to first separator, ie. first ’/’, into buf1

     out = buf1;

do { // skip spaces  

if (*url != ’  ’) *out++ = *url;

} while (*url++ != ’/’);

     strcpy(buf2, buf1);

 

[Code sample from presentation by Jon Pincus]

Why not parse the url into  

some URL object/datatype as 

part of  the isValid() method?

19

The (partial) parsing by 

this loop possibly 

repeats work done in 

isValid() 



Sanitisation nightmares: XSS

Many places to include Javascript and many ways to encode

Eg <script> alert('Hi'); </script> can be injected as

• <body onload=alert('Hi')> 

• <b onmouseover=alert('Hi')>Click here!</b>

• <img src="http://some.url.that/does/not/exist"   

onerror=alert('Hi');>

• <img src=j&#X41vascript:alert('Hi')>

• <META HTTP-EQUIV="refresh"   

CONTENT="0;url=data:text/html;base64,PHNjcmlwdD5hbGVydC

gndGVzdDMnKTwvc2NyaXB0Pg">

Root cause: complexity of HTML format   (https://html.spec.whatwg.org)

For a longer lists of XSS evasion tricks, see 

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

20



Where to canonicalise, valididate or sanitise:

Best done at clear choke points in an application

21

input

      
     

input

choke point
for
input check

data flows

input checks
all over 
the place

p
r
o
g
r
a
m



Trust boundaries & choke points

Identifying trust boundaries useful to decide where to have 

choke points  

• in a network, on a computer, or within an application

22



II.  Tackling insecure & incorrect parsing

-

using the LangSec approach

23



Buggy parsing – two different kinds

Here by buggy parsing we mean

1. insecure parsing  

Eg. buffer overflow in Office, PDF viewer, network stack, graphics 

library, ..   

2. incorrect parsing resulting in parser differentials,                                      

i.e. two libraries parsing the same URL in different ways 

 

 

24



Can we use input validation?

• Suppose we have a buggy PDF viewer with memory corruption 

that allows RCE.

Can we use input validation as protection?

• Yes & no: 

– we could validate a PDF file before feeding it to our PDF 

viewer, 

– but... for that we need a correct & secure PDF parser, so we 

are back to the original problem

– Still, for legacy applications it may be an improvement

25



LangSec (Language-Theoretic Security)     

• Interesting look at root causes of large class of input 

handling bugs, namely buggy parsing  

• Useful suggestions for dos and don’ts

• The ‘Lang’ in ‘LangSec’ refers to input languages,                                                        

.     not  programming languages.                                      

26

‘The science of  insecurity’

Sergey Bratus &

Meredith Patterson 

presenting LangSec at CCC 2012 



Root causes / anti-patterns

• Complex input language or format

• Sloppy definitions of this input language or format

• Hand-written parser code

• Mixing input recognition & processing in shotgun parser

27



Anti-pattern: shotgun parser

Code incrementally parses & interprets input, in a piecemeal 

fashion, chopping it up for further parsing elsewhere

 Fragments passed around as unparsed byte arrays or strings

 

Input fragments of  input penetrate deeply, and any code that 

touches these bits may contain exploitable input bugs.

28

p
a

rs
e

r

input



LangSec concepts

• Shotgun parser: scattershot approach to parsing data in bits and 

pieces, mixing recognition (i.e. the actual parsing) & processing

• Weird machine: a buggy parser provides a strange execution 

platform that can be ‘programmed’ with malformed input

– This weird machine may even be Turing-complete (recall ROP 

programming with gadgets)

– Cool example: executing code on a x86 processor just using page 

faults, without ever executing CPU instructions                                      

[Bangert, Bratus, Shapiro, and Smith, The Page-Fault Weird Machine: Lessons in 

Instruction-less Computation, USENIX WOOT 2014]

29



LangSec principles to prevent buggy parsing  

No more hand-coded shotgun parsers, but

1. precisely defined input languages

ideally with regular expression or context-free grammar (eg EBNF)

2. generated parser code

3. complete parsing before processing

4. keep the input language simple & clear

So that bugs are less likely

So that you give minimal processing power to attackers

30



Preventing buggy parsing - the LangSec way

application

p
a

rs
e

r

LangSec approach:

• Clear & ideally language spec

• Generated parser code

• Complete parsing before processing  

rest of  the program only handles well-formed data structures 

produced by parser

input
Some C struct, 

 Java/C++ object,

   or error

31



LangSec in slogans

32



33



Minimise the resources & computing power that input handling 

gives to attackers

34



All parsers should be equivalent.

And parsers should be the exact inverse of the pretty printers aka 

unparsers

35



III.     How (not) to prevent

 unintended parsing,

i.e. injection attacks

36



How & where to prevent injection attacks?

Suppose we are worried about SQL injection via a website

• Should we validate, sanitise, or both to prevent SLQi?

• if so, where?  At point A or B?

 

We assume we know a perfect allow-list or deny-list of dangerous characters 

for SQL injection.

We ignore canonicalisation of name & address.

We ignore validation to make sure that eg. the address exists.

37

OnlineShop.nl

BA
customer 
database

- name 
- address

C



Input validation ?

Input  validation, i.e. rejecting weird characters at point A

 

Pros?

• Eliminates problem at the source root, so application only has to 

deal with ‘clean’ data  

Cons?

• We may reject legitimate inputs, eg   ’s-Hertogenbosch

38

OnlineShop.nl

BA
customer 
database



Input  sanitisation?

Input sanitisation, e.g. escaping weird characters at point A

 Eg replacing  ’ with \’

Pros?

• Eliminates problem at the source root, so application only has to 

deal with ‘harmless’ data

• We no longer reject legitimate input

Cons?

• We have some data in escaped form, \’s-Hertogenbosch and 

may need to un-escape it later

• Also, what if there are more back-end than just SQL dataset?

39

OnlineShop.nl

BA
customer 
database



  

 

Different escaping needed to prevent SQLi, XSS, path traversal, OS 

command injection, …  

Eg SQL database may be attacked with username  Bobby; DROP TABLE                    

but file system with username                  ../../etc/passwd                               

and email program with username           john@ru.nl; & rm –fr /

For most systems, it’s a fallacy to think that one  input 

sanitisation routine can solve all  injection problems

Multiple backends/APIs introduce multiple contexts 

40

OnlineShop.nl

BA

customer 
database

file system

HTML renderer

email program



  

If we sanitise outputs instead of inputs then sanitisation can be 

tailored to the context:

for SQL database                   ; ’ ” DROP TABLE 

for HTML renderer                 < > & script    

for file system                          . .. / \  ~                  

for OS command                     & | ||  <  >   

OnlineShop.nl

Output  sanitisation! aka output encoding 

41

B1

A

customer 
database

file system

HTML renderer

email program

B2

B3

B4



Output encoding to prevent injection attacks

We can prevent injection attacks by careful output encoding                               

- in the right place, using the right encoding function.

However, this is easy to get wrong...

More structural approaches to prevent or spot mistakes:

a) Prepared statements aka Parameterised queries

    Easy to get right – as it gets rid of the problem.                                    

     But... only works in simple settings

b) Tainting

     Using DAST or SAST tool to spot or add missing encodings  

c) Safe Builders

     Using type system to prevent missing or wrong encodings

42



a) Prepared Statements

43



Dynamic SQL vs Prepared statements 

Interface with SQL database can use 

• Dynamic SQL:                                           

      one string, which includes user input, is provided as SQL query  

                              

    "SELECT * FROM Account WHERE Username = " + $username 

                                                    + "AND Password = " + $password 

• Prepared statements aka parameterised queries: 

 a string with placeholders is provided as query,                                                      

and user inputs are provide as separate parameters

     "SELECT * FROM Account WHERE Username = ? AND Password = ?“    

$username                                                                                                 

$password   

44



Dynamic SQL & prepared statements in Java  

Code vulnerable to SQLi using dynamic SQL

  String updateString =                        

    "SELECT * FROM Account WHERE Username" 

     + username + "AND Password =" + password;                     

  stmt.executeUpdate(updateString);    

Code not  vulnerable to SQLi using prepared statements 

  PreparedStatement login = con.preparedStatement("SELECT 
* FROM Account   

          WHERE Username = ? AND Password = ?" );

  login.setString(1, username); 

  login.setString(2, password);

  login.executeUpdate();

45

bind variable



The idea behind prepared statemens

(aka parameterised queries) 

• Prepared Statements: the query is parsed first and then parameters 

are substituted later

• Dynamic SQL: parameters are substituted first and then the result is 

parsed & processed 

Key insight: we do not parse the parameters as SQL,                                                          

so the substitution becomes less dangerous 

46

SELECT ... FROM ...  WHERE ...

Accounts AND*

= =

Username Passwd$1 $2



Limitation of this approach, more generally

as general technique to prevent injection attacks

• Requires custom solution for each injection-prone API method 

– Eg for safe LDAP queries, safe XPath queries,....

• Only works for simple situations that

1. involve just one encoding function

2.  involve only simple substitution patterns   

This means we cannot use it to combat XSS (more on that later)

Also, it may not be able to express some highly configurable fancy SQL 

queries

48



Prepared Statements not quite fool-proof

Prepared statements are easy to use, but not quite fool-proof

 

PreparedStatement login = con.preparedStatement      

   ("SELECT * FROM Account WHERE Username" 

     + username + "AND Password =" + password);

login.executeUpdate();

    

49



b) Tainting

50



Tainting aka Taint analysis

Core idea is to use data flow analysis: 

• we track & trace user inputs – aka tainted data

• If tainted data ends up in a dangerous API, we give a warning

Such an analysis needs to know

• all  sources & sinks

• all operations that combine data and propagate taint

– eg concatenation of two strings is tainted if one of them is  

• all operations that sanitise data and remove taint

– eg SQLencoding removes taint (as far as SQLi is concerned)

Taint analysis can be done dynamically (DAST) or statically (SAST)

 

51



Dynamic & static taint analysis  

• Perl scripting language first introduced a taint mode in 1989

– external input are marked & tracked 

– Perl execution engine aborts when tainted data is fed to dangerous 

functions

– Taint mode was removed in Perl 6  

• Microsoft Office uses taint tracking of documents using the   

Mark of the Web to block or warn about macros in tainted 

documents

Rules tightened March 2022; Visual Basic depreciated May 2024

https://techcommunity.microsoft.com/blog/windows-itpro-blog/vbscript-deprecation-timelines-and-next-

steps/4148301

• Most SAST tools (incl. Fortify, discussed in SIO lecture, semgrep 

and CodeQL) use taint analysis to provide warnings about inputs 

reaching dangerous sinks (without being validated/encoded).

52



Tainting limitations?

• Multiple sanitisation operations, for different types of 

data/different sinks (eg SQL vs HTML), complicate matters

Accurate analysis requires different kinds of taint

• There may be many  sources, many  sinks and many operations 

that remove or propagate taint, or possibly propagate taint

– Missing one is easy, resulting in false negatives or positives. 

– Too much data may get tainted, resulting in unworkable 

number of false positives.

• Static taint analysis of large programs becomes complex.              

False positives or false negatives may be unavoidable.

Doing intra-procedural analysis (i.e. per method/function) 

instead of inter-procedural analysis (i.e. whole program) may 

keep things feasible, typically at the expense of precision 

53



c) Safe builders

54



Safe Builder approach

• Effectively the opposite approach to tainting:                                    

instead of tracking tainted / dangerous data,                                   

we track untainted / safe data.

• Key idea: we use type system of programming language to 

distinguish

1. ‘trusted’ data that does not  to be encoded 

2. ‘untrusted’ data that needs to be encoded

3. data encoded for a specific context                                                                       

with a different type for each context

One special addition to conventional type systems:                                         

distinguishing compile-time constants (esp. string literals) 

Used by Google’s Trusted Types in Chrome to combat DOM-based XSS.

55



Safe builder for SQL injection  

• Suppose we have an unsafe API method

     void executeDynamicSQLQuery (String s)

• We define a new ‘wrapper’ String type SQLquery and a function that 

executes such a wrapped string

 void safeExecuteSQLQuery (SafeSQLquery s){

   executeDynamicSQLCommand(the string in  s  );

 }

• We now define functions to create SafeSQLquery

1. any compiled-time constant can be turned into a SQLquery     

  SafeSQLquery create (@CompiletimeConstant String s)

2.  we can append a string to an SafeSQLquery using a function

      SafeSQLquery appendSQL (SafeSQLquery q, String s) 

    which will apply the right encoding to s  

Type system guarantees that user inputs in queries are properly escaped.  

We disallow use of the old unsafe executeDynamicSQLQuery .

56



Safe builders for several contexts

If we use string-like data in several contexts, each with their own encoding, 

we can introduce  a different String-like typesa for each, e.g.

   SafeSQLquery, SafeHTML,  SafeOSCommand, SafeFilename 

with association constructors or factory methods for each, e.g.

   SafeHTML create (@CompiletimeConstant String s)

    SafeHTML concatHTML (SafeHTML h1, SafeHTML h2) 

    SafeHTML appendHTML (SafeHTML h, String s) 

appendHTML(h,s) and appendSQL(h,s) would use different encodings for 

the parameter s

We could introduce unsafe loopholes that we have to evaluate by hand

         SafeHTML unsafeCreate (String s)

57



Positive vs negative security models

The choice between positive vs negative security models comes 

back in several places

• Tainting = data is 'safe' unless tainted,

     Safe builders = data is 'unsafe' unless type says otherwise

• allow lists vs deny lists 

• security requirements vs attack scenario 

58



The messy business of preventing XSS

59



Reflected XSS attack

Attacker crafts malicious URL containing JavaScript  

     https://google.com/search?q=<script>...</script>

and tempts victim to click on this link 

Could careful web server prevent this?

Yes, by validating & rejecting and/or encoding content in query!

60

1.malicious

URL

3. HTML response containing 

<script> ... </script>

2. HTTP request with 

   malicious link

victim’s

browser

server



Attacker injects HTML into a web site, eg forum posting in Brightspace,          

which is stored and echoed back later when victim visit the same site

Could careful web server prevent this?

Yes, by rejecting and/or encoding content when it is stored or retrieved

server data

base

Stored XSS attack

61

2. malicious 

input stored  

3. HTTP 

request

4. malicious 

content retrieved

victim’s

browser

1. malicious 

input  

5. response with 

malicious HTML  

content 



Encoding for the web - server-side

62

Many sites use web templating framework to generate web pages.

Below a web template for a web page with parameters written as ${...}

1   '<html>

2    <body>

3       <h1> ${name}&apos;s Blog!  </h1>

4         ${description}

5       <a href="https://ourdomain.nl/contact?user=${username}&lang=${lang}">User info for ${name} </a>

6       <b onmouseover=alert("Welcome to ${firstname}’s page")>Click here for a pop-up</b>

7    </body>

8    </html>'

Parameters – properly encoded – are filled by web server / templating engine.

How should the parameters be encoded here?

 



Encoding for the web - server-side  

63

   '<html>

    <body>

       <h1> ${name}&apos;s Blog! </h1>

          ${description}

        <a href="https://ourdomain.nl/contact?user=${username}&lang=${lang}">Contact details for ${name} </a>

        <b onmouseover=alert("Welcome to ${firstname}’s page")>Click here for a pop-up</b>

    </body>

    </html>'

 

NB all these encodings can be done server-side

Getting this right is tricky!

HTML encoding (eg of  < and > )

JavaString literal encoded (eg of  ' and " )

URL encoding (eg of  ?)



Some of the encodings for the web  

• HTML encoding 

      < > & ” ’  replaced by    &gt; lt; &amp; &quot &#39

Complication: encoding of attribute inside HTML tag may be different  

• URL encoding aka %-encoding 

   / ? = % #  replaced by   %2F %3F %3D %25 %23 

       space  replaced by    %20 or +

Try this out with e.g.  https://duckduckgo.com/?q=%2F+%3F%3D

Complication: encoding for query segment different than for initial part, 
eg for / aka %2F

• JavaScript string literal encoding

           ’  replaced by    \’  

     Eg ’this is a JS string with a \’ in the middle’

Complication: JavaScript allows both ' and "  for strings

• CSS encoding

• ...

 

64


	Slide 1: Software Security Secure INPUT handling  
	Slide 2: Recap: most flaws are input handling flaws
	Slide 3: Two types of input problems: bugs vs features
	Slide 4: Two types of input problems: bugs vs features
	Slide 5: Why so many & so many different kinds?
	Slide 6: Why so many & so many different kinds?
	Slide 7:  Audience poll
	Slide 8: Preventing input handling problems
	Slide 9: I. The three basic protection mechanisms
	Slide 10: Canonicalisation, Validation, Sanitisation
	Slide 11: a)   Canonicalisation (aka Normalisation)
	Slide 12: a)  Canonicalisation
	Slide 13: b)  Validation
	Slide 14: b) Validation techniques
	Slide 15: c) Sanitisation aka encoding
	Slide 16: Validation patterns can get  COMPLEX            
	Slide 17: Parse, don’t validate!
	Slide 18: Spot the defect  
	Slide 19: Parse, don't validate?
	Slide 20: Sanitisation nightmares: XSS
	Slide 21: Where to canonicalise, valididate or sanitise:
	Slide 22: Trust boundaries & choke points
	Slide 23:  II.  Tackling insecure & incorrect parsing - using the LangSec approach
	Slide 24: Buggy parsing – two different kinds
	Slide 25: Can we use input validation?
	Slide 26: LangSec (Language-Theoretic Security)     
	Slide 27: Root causes / anti-patterns
	Slide 28: Anti-pattern: shotgun parser
	Slide 29: LangSec concepts
	Slide 30: LangSec principles to prevent buggy parsing  
	Slide 31: Preventing buggy parsing - the LangSec way
	Slide 32: LangSec in slogans
	Slide 33
	Slide 34:  
	Slide 35:  
	Slide 36:  III.     How (not) to prevent  unintended parsing, i.e. injection attacks
	Slide 37: How & where to prevent injection attacks?
	Slide 38: Input validation ?
	Slide 39: Input  sanitisation?
	Slide 40: Multiple backends/APIs introduce multiple contexts 
	Slide 41: Output  sanitisation! aka output encoding 
	Slide 42: Output encoding to prevent injection attacks
	Slide 43: a) Prepared Statements
	Slide 44: Dynamic SQL vs Prepared statements 
	Slide 45: Dynamic SQL & prepared statements in Java   
	Slide 46: The idea behind prepared statemens (aka parameterised queries) 
	Slide 48: Limitation of this approach, more generally
	Slide 49: Prepared Statements not quite fool-proof
	Slide 50: b) Tainting
	Slide 51: Tainting aka Taint analysis
	Slide 52: Dynamic & static taint analysis  
	Slide 53: Tainting limitations?
	Slide 54: c) Safe builders
	Slide 55:  Safe Builder approach
	Slide 56: Safe builder for SQL injection  
	Slide 57: Safe builders for several contexts
	Slide 58: Positive vs negative security models
	Slide 59: The messy business of preventing XSS  
	Slide 60: Reflected XSS attack
	Slide 61: Stored XSS attack
	Slide 62: Encoding for the web - server-side
	Slide 63: Encoding for the web - server-side  
	Slide 64: Some of the encodings for the web  

