News story this week

LogoFAIL cvE-2023-5058, CVE-2023-40238, CVE-2023-39539, CVE-2023-39538

“The Binarly Research team investigates vulnerable image parsing
components across the entire UEFI firmware ecosystem and finds
all major device manufacturers are impacted on both x86 and ARM-
based devices”

https://binarly.io/posts/The_Far_Reaching_Consequences_of _LogoFAlL/index.html

Not the only image parsing bug in the news this week:
CVE-2023-6345

“This high-severity zero-day vulnerability stems from an integer overflow
weakness within the Skia open-source 2D graphics library, posing risks
ranging from crashes to the execution of arbitrary code (Skia is also used as
a graphics engine by other products like ChromeOS, Android, and Flutter).+

https://www.bleepingcomputer.com/news/security/google-chrome-emergency-update-fixes-6th-zero-day-exploited-in-2023/

https://Iwww.lookout.com/threat-intelligencel/article/cve-2023-6345

Software Security
Information Flow

(Chapter 5 of lecture notes on language-based security)

Erik Poll

Digital Security group
Radboud University Nijmegen

Motivating example

Imagine using a mobile phone app to
1. locate nearest hotel using google
2. book a room with your credit card

Sensitive information?
. location information & credit card no

(Un)wanted information flows?
 location should be leaked to google only
« credit card info should be leaked to hotel on/y

Such information flow policies are an interesting class of security
policies

Motivating example

Suppose that for our mobile phone app we want to enforce
« location should be leaked to google only
« credit card info should be leaked to hotel on/y

« Can OS access control on the app prevent these flows?

NO! Access control can give or deny an app access to some
information or service, but cannot restrict what the app does
with it.

« More generally, could we enforce this at runtime by monitoring
the inputs & oultputs of the application?

NO! Unless track the information /nside the app with dynamic
taint tracking.

. Recall PREfast supported static taint tracking - clumsily — also
inside the code

Information Flow

An interesting category of security requirements is about
information flow.

Eg
- no confidential information should leak over network
- no untrusted input from network should leak into database

Information flow properties can be about confidentiality or
integrity

Note the difference with access control:
— access control is about access only
(eg for mobile phone app, access to the location data)

— information flow is a/so about what you do with data
after you accessed it

(eg how you process & forward location data)

« Warning: possible exam questions coming up!

Example Information Flow - Confidentiality

String hi; // security label secret
String lo; // security label public

Which program fragments (may) cause problems
if hi has to be kept confidential?

1. hi = lo; 5. println(lo) ;
2. lo = hi; 6. println(hi);
3. lo = "1234"; 7. readln(lo) ;
4. hi = "1234"; 8. readln (hi) ;

Example Information Flow - Confidentiality

String hi; // security label secret
String lo; // security label public

Which program fragments (may) cause problems
if hi has to be kept confidential?

v'1. hi = lo; v 5. println(lo)
X 2. 1o = hi; X 6. println(hi);
v 3. lo = "1234"; v 7. readln(lo);
? 4. nhi = "1234"; ? 8. readln(hi);

Example Information Flow - Confidentiality

String hi; // security label secret
String lo; // security label public

Which program fragments (may) cause problems
if hi has to be kept confidential?

some function call(hi);
encrypt (hi,AESkey) ;

Example Information Flow - /ntegrity

String hi; // high integrity (trusted) data
String lo; // low integrity (untrusted) data

Which program fragments (may) cause problems
if integrity of hi is important ?

1. hi = lo; 5. println(lo) ;
2. lo = hi; 6. println(hi);
3. lo = "1234"; 7. readln(lo) ;
4. hi = "1234"; 8. readln (hi) ;

10

Example Information Flow - /ntegrity

String hi; // high integrity (trusted) data
String lo; // low integrity (untrusted) data

Which program fragments (may) cause problems
if integrity of hi is important ?

1. hi = 1o; v’ 5. println(lo);
v 2. lo = hi; v/ 6. println(hi) ;
v 3. lo = "1234"; v' 7. readln(lo);
v 4. hi = "1234"; ¥ 8. readln(hi);

11

Example Information Flow - /ntegrity

String hi; // high integrity (trusted) data

String lo; // low integrity (untrusted) data

Which program fragments (may) cause problems
if integrity of hi is important ?

= W IR

. hi
. hi
. hi
. hi

//

some function call(lo);
convertToUpperCase (10) ;
HTMLencode (10) ;

= checkAndStripMAC (lo) ;

where MAC is MessageAuthenticationCode

12

Duality between integrity & confidentiality

Integrity and confidentiality are duvals :

if you "flip" everything in a property or example for
confidentiality,

you get a corresponding property or example for integrity

For example

inputs are dangerous for integrity,
outputs are dangerous for confidentiality

13

Information flow

Information flow properties are about ruling out unwanted
influences/dependenciesl/interference/observations

Note the difference between data flow properties and
visibility modifiers (eg public, private) or, more generally,
access control
- it's not (just) about accessing data, but also about what
you do with it

14

Questions

What do we mean by information flow? (informally)
How can we specify information flow policies?
How can we enforce or check them?

- dynamically (runtime)

- statically (compile time) — by type systems

What is the semantics (ie. meaning) of information flow
formally?

15

Trickier examples for confidentiality

int hi; // security label secret
int lo; // security label public

Which program fragments (may) cause problems for
confidentiality?

1. if (hi > 0) { lo = 99; }
2. if (1o > 0) { hi = 66; }
3. if (hi > 0) { rlnt(lo) }
4. if (lo > 0) { print(hi) ;}

Trickier examples for confidentiality

int hi; // security label secret
int lo; // security label public

Which program fragments (may) cause problems for

X 1.
v 2.

X 3.
X 4.

if
if
if
if

(hi
(lo
(hi
(lo

confidentiality?

> 0)
> 0)
> 0)
> 0)

{
{ h
{
{

lo = 99; }
= 66, }
rlnt(lo) }

print (hi) ;}

implicit
aka
indirect flows

17

indirect vs direct flows

There are (at least) two kinds of information flows

- direct aka explicit flows

by “direct” assignment or leak
eg 1lo=hi; or println(hi);
* indirect aka implicit flows

by indirect “influence”
eg if (hi > 0} { lo = 99; }

Implicit flows can be partial, ie leak some but not a// info
Eg the example above only leaks the sign of hi, not its value.

18

Trickier examples for confidentiality

Example
int hi; // security label secret
int lo; // security label public

Which program fragments (may) cause problems for
confidentiality?

. while (hi>99) do {....};
. while (l1lo>99) do {....};
. a[hi] = 23; // where
. a[hi] = 23; // where
. a[lo] = 23; // where
. a[lo] = 23; // where

is high/secret
is low/public
is high/secret

o O d W N R

p PP

is low/public

19

X 1.

v 2.
X 3.

4.

Trickier examples for confidentiality

int hi; // security label secret
int lo; // security label public

while (hi>99) do {....};

Il timing or termination may reveal if hi > 99

while (1o>99) do {....}; /llnoproblem
al[hi] = 23; // where a is high/secret
Il exception may reveal if hi is negative

alhi] = 23; // where a is low/public

Il contents of a may reveal value of hi and, again,
Il exception may reveal if hi is negative

al[lo] = 23; // where a is high/secret

Il exception may reveal the length of a, which may be secret
al[lo] = 23; // where a is low/public - no
problem

20

Hidden channels

More subtle forms of indirect information flows can arise via

hidden channel aka covert channels aka side channels
(non)termination
eg while (hi>9%99) do {....};
or if (hi=99) then {“loop”} else {“terminate”}
execution time
eg for (i=0; i<hi; i++) {...};
or if (hi=1234) then {...} else {...}
exceptions
eg a[i] = 23 may reveal length of a (if i is known),
or leak info about i (if length of a is known),
or reveal if ais null..

21

Hidden channels

Apart from timing & terminations, there are many more side-
channels:

— noise
— power consumption
— EM radiation — aka TEMPEST attacks

In the courses Physical Attacks on Secure Systems and Cryptographic
Engineering you can find out more about hidden channels

In our lab we have set-ups for
power analysis & EM radiation

How can we statically enforce information
flow policies by means of a type system?

Type-based information flow

Type systems have been proposed as way to restrict
information flow.

most of the theoretical work considers confidentiality,
but the same works for integrity

Practical problem: often very (too) restrictive, because of
difficulty in ruling out implicit flows

24

Types for information flow (confidentiality)

We consider a lattice (in Dutch: tralie) of different security
levels

For simplicity, just two levels H
- H(igh) or confidential, secret

- L(ow) or public

Typing judgements e:t L
meaning e has type t

implicitly with respect to a context x,:t,, ... x,.:t, that gives
levels of program variables

25

More complex lattices

Top Secret Top Secret
Secret Top Secret Syria Top Secret Libya
Secret
Classified / \
| Secret Syria Secret Libya

Unclassified \ /

Unclassified

26

NATO classification

Cosmic

Secret

Confidential

Restricted

Unclassified

27

Rules for expressions

e :t means e contains information of level t or Jower

« variable x:t if xis avariable of type t

« operations et et for some binary operation +
ete':t (similar for n-ary)

* subtyping et t<t

e:t

28

Rules for commands

s . ok t means s only writes to level t or higher

assighment e:t xisavariable of type t
x:=e :okt

if-then-else e:t c1:0kt c2:0kt
ifethenc1elsec2:0kt

« subtyping c:okt t>1t
c:okt

ie. okt<okt’ iff t>t' (anti-monotonicity)

29

Rules for commands

s : okt means s only writes to level t or higher

composition cl:0kt c2:0kt
cl1;c2:0kt
while e:t c:okt

whileedoc : 0k t

30

Beware

Beware of the confusing difference in directions

e:t means e contains information of level t or Jower

s : okt means s only writes to level t or higher
For people familiar will Bell - LaPadula access control :

there you have the same confusion,
in the “no read up” & “no write down” rules

How can we be sure that such
type systems are “correct”?

Soundness and Completeness

« soundness of the type system:
programs that are well-typed do no leak
« completeness of the type system:
programs that do not leak can be typed

Is the type system on preceding slides
« sound?

« complete?

How can we determine this?

Counterexamples for completeness

It is easy to give examples that are not typable
but do not leak, eg

e if (false) then { lo = hi; }
* lo=hi + 1 - hi;
* lo = hi; lo = 12;

Soundness

Is this type system sound?
- ie does is prevent the information flows that we want to
prevent

How do we define what we want to prevent?
Recall the tricky examples of implicit flows

This is commonly done using notions of non-interference,
which try to capture the notion of what can be observed

Non-interference gives a precise semantics for what
“information flow” means

35

Soundness wrt non-interference

Definition For memories (or program states) p and v,

we write n= v iff pand v agree on low variables.

Definition (Non-interference)

A program C does not leak information if, for all p = v:
if executing C in pu terminates and results in p',
and executing C in v terminates and results in V',

then u' = v'

Theorem (Soundness)
if C:okt then C does not leak information

36

Termination as covert channel?

Definition (Non-interference) termination-/nsensitive
A program C does not leak information if, for all p = v:
if executing C in p terminates and results in p',
and executing C in v terminates and results in v',
then p' = V'
Does this rule out (non) termination as hidden channel (as
observation to distinguish two runs)?

Definition (Termination-sensitive non-interference)
A program C does not leak information if, for all p = v:
if executing C in p terminates in p',

then executing C in v also terminates, and results in some V'

with p' = V'

37

While-rule for termination-sensitive non-interference

The while-rule
e:t c:okt

whileedoc : okt

does not rule out non-termination as covert channel

A more restrictive rule
e:L c:.ok L

whileedoc:ok L

does rule this out.
(How? NB this is very restrictive!)

A similar change needed for in-then-else rule.

38

Other notions of secure information flow

Other definitions of what it means to be secure (in the sense
of non-leaking) are needed if

if programs can throw exceptions

- exceptions are another covert channel, just like non-
termination

if programs are multi-threaded or non-determinisitic

- because execution of a program can then result in
several outcomes

- multi-threaded programs are non-deterministic,
because results can depend on scheduling

39

The problem with secure information flow

Practical problem with secure information flow:
the extreme restrictions it imposes, esp. when it come to
ruling out implicit flows

- Eg no while loop with a high guard

- Note that 1ogin program inevitably leaks information
about the password

For most practical applications, we need a looser notion
of information flow than non-interference

Some controlled form of declassification

41

Declassification

More permissive forms of information flow can allow
de-classification, eg

for confidentiality:

- output of encryption operation is labelled as public,
even though it depends on secret data.

for integrity:
- output of input validation routine may be trusted, even
though it depends on untrusted data

- output of routine that checks digital signature may be
trusted, even though it depends on untrusted data

42

Information Flow in practice

Information flow for integrity — aka tainting — is commonly
used in SAST and DAST tools, as discussed last week
Eg

— PREfast

— perl tainting mode

— most SAST tools such as Fortify (presented in SIO guest
lecture by Frans van Buul)

These are often unsound and/or incomplete
as concession to practicality

Pragmatic approaches typically worry less - if at all - about
implicit flows
Indeed, are implicit flows an issue for integrity?

* For confidentialy implicit flows can clearly be dangerous;
for integrity this is not so clear.

45

Summary

What is information flow (informally)?

explicit flows , implicit flows, covert channels

How can we statically control information flow,
using type systems?

How can we formally define what information flow is?
non-interference,

in termination-sensitive or termination-/nsensitive variant

You can read all this in Chapter 5 of the lecture notes on
Language-Based Security

47

Possible exam questions

« Explaining if there is unwanted information for integrity or
confidentiality in example programs

(like those on slides 6-11, 15, 17)

« Giving and/or motivating a typing rule for information flow
typing (like on slides 27-29 or 37), for termination-
sensitive or insensitive

« Giving and/or explaining the definition of
non-interference, for integrity or confidentiality

(but not the possibilistic & probabilistic versions)

	Slide 1: News story this week
	Slide 2: Software Security Information Flow (Chapter 5 of lecture notes on language-based security)
	Slide 3: Motivating example
	Slide 4: Motivating example
	Slide 5: Information Flow
	Slide 6
	Slide 7: Example Information Flow - Confidentiality
	Slide 8: Example Information Flow - Confidentiality
	Slide 9: Example Information Flow - Confidentiality
	Slide 10: Example Information Flow - Integrity
	Slide 11: Example Information Flow - Integrity
	Slide 12: Example Information Flow - Integrity
	Slide 13: Duality between integrity & confidentiality
	Slide 14: Information flow
	Slide 15: Questions
	Slide 16: Trickier examples for confidentiality
	Slide 17: Trickier examples for confidentiality
	Slide 18: indirect vs direct flows
	Slide 19: Trickier examples for confidentiality
	Slide 20: Trickier examples for confidentiality
	Slide 21: Hidden channels
	Slide 22: Hidden channels
	Slide 23: How can we statically enforce information flow policies by means of a type system?
	Slide 24: Type-based information flow
	Slide 25: Types for information flow (confidentiality)
	Slide 26: More complex lattices
	Slide 27: NATO classification
	Slide 28: Rules for expressions
	Slide 29: Rules for commands
	Slide 30: Rules for commands
	Slide 31: Beware
	Slide 32: How can we be sure that such type systems are “correct”?
	Slide 33: Soundness and Completeness
	Slide 34: Counterexamples for completeness
	Slide 35: Soundness
	Slide 36: Soundness wrt non-interference
	Slide 37: Termination as covert channel?
	Slide 38: While-rule for termination-sensitive non-interference
	Slide 39: Other notions of secure information flow
	Slide 41: The problem with secure information flow
	Slide 42: Declassification
	Slide 45: Information Flow in practice
	Slide 47: Summary
	Slide 48: Possible exam questions

