Fuzzing results

Seyed Behnam Andarzian Cristian Daniele Erik Poll Digital Security group Radboud University Nijmegen

Fuzzing – case studies

	SUT	input formats
1	Blurhash	jpeg, png, webp, gif
2	Gifdiff	gif
3	ExrTools	OpenEXR
4	OpenJPH	jpeg2000
5	pngquant	png
6	Fleet-protocol	???
7	libemf2svg	EMF
8	pdf2htmlEx	pdf
9	nsxiv	image
10	cJSON	json
11	collapse	image
12	PDFio	pdf
14	WaveCollapseFunction	png
16	Godot	.godot .tcsn .escn .pack .tres
17	OpenJPG	jpeg
20	Poppler	pdf
22	Gifsicle	gif

Fuzzing – tools used

	SUT	tools
1	Blurhash	afl++, honggfuzz, radamsa
2	Gifdiff	afl++, honggfuzz, zzuf
3	ExrTools	afl++, honggfuzz, zzuf, radamsa
4	OpenJPH	afl++, honggfuzz, zzuf
5	pngquant	afl++, zzuf, honggfuzz, Radamsa
6	Fleet-protocol	afl++ with custom mutator
7	libemf2svg	afl++, honggfuzz, zzuf
8	pdf2htmlEx	afl++, honggfuzz, zzuf
9	nsxiv	afl++, formatfuzzer, honggfuzz
10	cJSON	afl++, radamsa, zzuf
11	collapse	afl++, honggfuzz, zzuf
12	PDFio	afl++, honggfuzz,zzuf
14	WaveCollapseFunction	afl++, honggfuzz
16	Godot	afl++, honggfuzz, zzuf, <mark>OSSfuzz</mark>
17	OpenJPG	afl++, honggfuzz, afl
20	Poppler	afl++, honggfuzz, zzuf, libfuzzer
22	Gifsicle	afl++, honggfuzz, zzuf

Fuzzing – results

	SUT	tools	tools that found crashes
1	Blurhash	afl++, honggfuzz, radamsa	afl++, honggfuzz, radamsa?
2	Gifdiff	afl++, honggfuzz, zzuf	afl++, honggfuzz
3	ExrTools	afl++, honggfuzz, zzuf, radamsa	-
4	OpenJPH	afl++, honggfuzz, zzuf	afl++, honggfuzz, zzuf
5	pngquant	afl++, zzuf, honggfuzz, Radamsa	honggfuzz with MSan
6	Fleet-protocol	afl++ with custom mutator	-
7	libemf2svg	afl++, honggfuzz, zzuf	afl++, honggfuzz, zzuf
8	pdf2htmlEx	afl++, honggfuzz, zzuf	afl++, honggfuzz, zzuf
9	nsxiv	afl++, formatfuzzer, honggfuzz	afl++, format fuzzer
10	cJSON	afl++, radamsa, zzuf	-
11	collapse	afl++, honggfuzz, zzuf	afl++, honggfuzz
12	PDFio	afl++, honggfuzz,zzuf	zzuf
14	wcf	afl++, honggfuzz	afl++,honggfuzz
16	Godot	afl++, honggfuzz, zzuf, OSSfuzz	afl++, honggfuzz, OSS-Fuzz
17	OpenJPG	afl++, honggfuzz, afl	afl++, honggfuzz, afl
20	Poppler	afl++, honggfuzz, zzuf, libfuzzer	-
22	Gifsicle	afl++, honggfuzz, zzuf	zuff

Fuzzing – new flaws found

	SUT	input formats
1	Blurhash	
2	Gifdiff	
3	ExrTools	
4	OpenJPG	
5	pngquant	
6	Fleet-protocol	yes
7	libemf2svg	yes
8	pdf2htmlEx	yes
9	nsxiv	yes?
10	cJSON	
11	collapse	yes
12	PDFio	yes
14	WaveCollapseFunction	
16	Godot	
17	OpenJPG	yes?
20	Poppler	
22	Gifsicle	yes?

Overheads of ASan and MSan (group 5)

Table 1 gives an overview over the conducted experiments.								
	Tool	Time	Number of Test Cases	Execution	Issues			
	1001	1 mie	initial \rightarrow generated	Speed	Found			
1	AFL++ (no sanitizer)	> 4 days	$1 \to 1070000000$	3000 exec/s	0			
2	AFL++ with ASan	> 4 days	$1 \to 141000000$	400 exec/s	0			
3a	AFL++ with MSan 1	20 hours	$1 \rightarrow 11400000$	160 exec/s	0			
~1					~			

Unexpected outliers (group 5)

honggfuzz with MSan finding bugs in less than a minute

Table 1 gives an overview over the conducted experiments.								
ID	Teol	Time	Number of Test Cases	Execution	Issues			
ID	1001	Time	initial \rightarrow generated	Speed	Found			
1	AFL++ (no sanitizer)	> 4 days	$1 \to 1070000000$	3000 exec/s	0			
2	AFL++ with $ASan$	> 4 days	$1 \to 141000000$	$400 \ \mathrm{exec/s}$	0			
3a	AFL++ with MSan 1	20 hours	$1 \rightarrow 11400000$	$160 \ \mathrm{exec/s}$	0			
3b	AFL++ with $MSan 2$	14 hours	$27 \rightarrow 6300000$	$125~{ m exec/s}$	0			
4	Zzuf	16 hours	$254 \rightarrow 1531274$	$26 \ \mathrm{exec/s}$	0			
5	Zzuf with ASan	10 hours	$254 \rightarrow 835764$	$23 \ \mathrm{exec/s}$	0			
6	Zzuf with MSan	6 hours	$254 \rightarrow 478234$	$22 \; \mathrm{exec/s}$	0			
7	Honggfuzz	24 hours	$254 \rightarrow 5247903$	$61 \ \mathrm{exec/s}$	0			
8	Honggfuzz with ASan	22.5 hours	$254 \rightarrow 4099435$	$51 \mathrm{~exec/s}$	0			
9	Honggfuzz with MSan	<1 min	$254 \rightarrow 1824$	13 m ~ exec/s	3			
10	Radamsa	16 hours	$254 \rightarrow 1910000$	$33 \ \mathrm{exec/s}$	0			
11	Radamsa with ASan	8 hours	$254 \rightarrow 1220043$	$42 \ \mathrm{exec/s}$	-			
12	Radamsa with MSan	7 hours	$254 \rightarrow 1040000$	$41 \mathrm{exec/s}$	0			

Table 1: Overview of used fuzzers

Overheads of ASan & MSan (group 17)

Experiment	Tool	Version	Time	#Test Cases	Crashes	Flaws
#1	AFL++	2.5.0	2.5h	25.3M	35	0
#2	AFL++ with ASan	2.5.0	2.5h	4.32M	13	1
#3	AFL++ with ASan	2.5.0	7h	10.9M	115	1
#4	AFL++ with MSan	2.5.0	9h	1.38M	7	1
#5	AFL++ with ASan	2.5.0	4h	8.11M	18	0
#6	AFL++ with ASan	2.5.0	16h	31.5M	13	0
#7	AFL++ with ASan	2.5.0	16h	32.4M	19	0
#8	AFL++ with ASan	2.5.0	16h	32.6M	12	0
#9	AFL++ with ASan	2.5.0	16h	21.4M	20	0
#10	AFL++ with ASan	2.4.0	4.2h	8.43M	0	0
#11	AFL++ with ASan	2.4.0	4.2h	8.28M	0	0
#12	AFL++ with MSan	2.5.0	19h	2.7M	9	1
#13	AFL++ with MSan	2.5.0	19h	2.7M	10	1
#14	zzuf	2.5.0	15m	1M	0	0
#15	zzuf	2.0.0	17m	1M	142K	0
#16	zzuf with ASan	2.5.0	23m	1M	0	0
#17	Honggfuzz	2.5.0	5h	1.37M	1 unique	0
#18	Honggfuzz with ASan	2.5.0	6h	1.23M	1 unique	0

Dumb fuzzers being dumb (group 17)

Experiment	Tool	Version	Time	#Test Cases	Crashes	Flaws
#1	AFL++	2.5.0	2.5h	25.3M	35	0
#2	AFL++ with ASan	2.5.0	2.5h	4.32M	13	1
#3	AFL++ with ASan	2.5.0	7h	10.9M	115	1
#4	AFL++ with MSan	2.5.0	9h	1.38M	7	1
#5	AFL++ with ASan	2.5.0	4h	8.11M	18	0
#6	AFL++ with ASan	2.5.0	16h	31.5M	13	0
#7	AFL++ with ASan	2.5.0	16h	32.4M	19	0
#8	AFL++ with ASan	2.5.0	16h	32.6M	12	0
#9	AFL++ with ASan	2.5.0	16h	21.4M	20	0
#10	AFL++ with ASan	2.4.0	4.2h	8.43M	0	0
#11	AFL++ with ASan	2.4.0	4.2h	8.28M	0	0
#12	AFL++ with MSan	2.5.0	19h	2.7M	9	1
#13	AFL++ with MSan	2.5.0	19h	2.7M	10	1
#14	zzuf	2.5.0	15m	1M	0	0
#15	zzuf	2.0.0	17m	1M	142K	0
#16	zzuf with ASan	2.5.0	23m	1M	0	0
#17	Honggfuzz	2.5.0	5h	1.37M	1 unique	0
#18	Honggfuzz with ASan	2.5.0	6h	1.23M	1 unique	0

Uniqueness

Does unique really mean unique? Often not!

Hangs / time-outs

Are hangs/time-outs really hangs?

Often not!

Time-outs (group 22)

Experiment ID	Tool	Time	Number of test cases	Crashes	Unique crashes	Timeout duration	Hangs
1	AFL++ with ASan	24h	120	240,000	16	3s	0
2	AFL++ with ASan	1h	63	23,000	5	3s	0
3	AFL++ without ASan	1h	69	0	0	3s	0
4	Honggfuzz with ASan	24h	123	4669	1527	1s	579
5	Honggfuzz with ASan	1h	118	5996	38	1s	0
6	Honggfuzz without ASan	1h	99	66	66	1s	13
7	zzuf with ASan	24h	12 million	?	?	3s	?

My guess: time-out too short for honggfuzz

zuff not worse than 'smart' fuzzers

group 4

Dumb fuzzer (zzuf) vs smart fuzzers (AFL++, Honggfuzz)

In conclusion, our examination of the fuzzing tools zzuf, AFL++, and Honggfuzz revealed some unexpected results. Contrary to our initial assumptions, zzuf, which is considered a "dumb" fuzzer, did not exhibit a significant disadvantage in bug discovery compared to the "smart" fuzzers AFL++ and Honggfuzz.

zuff better than 'smart' fuzzers!

group 22 Fuzzing Gifsicle only resulted in crashes by using zzuf, so zzuf outperformed AFL++, Honggfuzz there

but... different seed files were used

group 12

3.0.1 Without sanitization

ID	Fuzzing tool	Time	Test cases	Crashes	Hangs
#1	zzuf	6h	1734159	0	102
#2	honggfuzz	6h	318798	0	17
#3	afl++	24h	207425211	0	7

3.0.2 With ASan (address sanitization)

ID	Tool	Time	Test cases	Hangs	Crashes	Memory leaks	Buffer overflows
#1	zzuf	6h	953160	98	0	16681	5
#2	honggfuzz	6h	n/a	n/a	0	n/a	n/a
#3	afl++	24h	100857706	8	0	n/a	n/a

Flaws programs vs inherently dangerous inputs?

On certain crafted input PDF files, PDFio would get stuck in a loop on 100 percent processor utilisation. This can be used for a denial-of-service attack. Suppose we had some kind of hosted PDFio service. An attacker would be able to send it such a crafted PDF file, and pin the CPU utilisation of the service at 100%, causing it to become unavailable.

Maybe these PDF files are inherently complex, and would cause problems for other PDF viewers too?

CmpLog (group 4)

Alternative to using branch coverage to guide fuzzing:

CmpLog instruments code to record values used in comparisons & then using these values in mutations

ID_experimen t	ΤοοΙ	Time	Total number of executions	Executions per minute	Issues found
#1	AFL++ with ASan and Cmplog	18 in parallel, 3 hours each	543.60k	10.0k	2 unique issues
#2	AFL++ with ASan	1 vCpu on Azure, 6 days 10 hours	977.50k	686.4k	2 unique issues
#3	Honggfuzz with ASan and Cmplog	4 hours, 18 cores available	362.86k	5.04k	2 unique issues
#4	Honggfuzz with ASan and Cmplog	26 minutes, 18 cores available	44.56k	5.7k	2 unique issues
#5	Honggfuzz without instrumentat ion	10 minutes, 18 cores available	20.66k	6.8k	2 unique issues
#6	Zzuf without instrumentat ion	13 in parallel, 1 hour each	+-2012.85k	+-33.54k	2 unique issues

Beware of different goals of instrumentation

Instrumentation is used for two very different purposes in fuzzing:

1) to provide feedback to guide the mutation process eg afl's standard instrumentation to observe branch coverage and CmpLog

2) to detect bugs

eg the instrumentation added by sanitisers such as ASan, MSan, UBSan

Watch your prose

As the reader progresses through the following sections, they will gain valuable insights into the unique strengths and limitations of each fuzzing tool, in addition to gaining a comprehensive understanding of the security posture of the tool. The findings in this report have the potential to contribute significantly to the overarching discourse on software security, enabling efforts aimed at increasing the resilience of critical software components.

By leveraging the formidable capabilities of fuzzing techniques and tools, this report represents a critical step in strengthening open-source applications like Gifsicle and odt2txt and in strengthening the security and reliability of file processing within today's dynamic digital landscape.