Fuzzing results

Seyed Behnam Andarzian
Cristian Daniele

Erik Poll

Digital Security group
Radboud University Nijmegen

NN IR 2o ~NOO A~ ®WN

Fuzzing — case studies

SUT

Blurhash
Gifdiff
ExrTools
OpenJPH
pngquant
Fleet-protocol
libemf2svg
pdf2htmIEx
nsxiv
cJSON
collapse
PDFio
WaveCollapseFunction
Godot
OpendPG
Poppler
Gifsicle

input formats

jpeg, png, webp, gif
gif
OpenEXR
jpeg2000
Png
???
EMF
pdf
image
json
image
pdf
png
.godot .tcsn .escn .pack .tres
jpeg
pdf
gif

NS lormN oo NOOOAwWN =

Fuzzing - tools used

SUT

Blurhash
Gifdiff
ExrTools
OpenJPH
pngquant
Fleet-protocol
libemf2svg
pdf2htmIEx
nsxiv
cJSON
collapse
PDFio
WaveCollapseFunction
Godot
OpendPG
Poppler
Gifsicle

tools

afl++, honggfuzz, radamsa
afl++, honggfuzz, zzuf
afl++, honggfuzz, zzuf, radamsa
afl++, honggfuzz, zzuf
afl++, zzuf, honggfuzz, Radamsa
afl++ with custom mutator
afl++, honggfuzz, zzuf
afl++, honggfuzz, zzuf
afl++, formatfuzzer, honggfuzz
afl++, radamsa, zzuf
afl++, honggfuzz, zzuf
afl++, honggfuzz,zzuf
afl++, honggfuzz
afl++, honggfuzz, zzuf, OSSfuzz
afl++, honggfuzz, afl
afl++, honggfuzz, zzuf, libfuzzer
afl++, honggfuzz, zzuf

Fuzzing - results

| suT | tools | toolsthatfound crashes
1 Blurhash afl++, honggfuzz, radamsa afl++, honggfuzz, radamsa?
2 Gifdiff afl++, honggfuzz, zzuf afl++, honggfuzz
3 ExrTools afl++, honggfuzz, zzuf, radamsa -
4 OpendPH afl++, honggfuzz, zzuf afl++, honggfuzz, zzuf
5 pngquant afl++, zzuf, honggfuzz, Radamsa honggfuzz with MSan
6 Fleet-protocol afl++ with custom mutator -
7 libemf2svg afl++, honggfuzz, zzuf afl++, honggfuzz, zzuf
8 pdf2htmIEx afl++, honggfuzz, zzuf afl++, honggfuzz, zzuf
9 nsxiv afl++, formatfuzzer, honggfuzz afl++, format fuzzer
10 cJSON afl++, radamsa, zzuf -
11 collapse afl++, honggfuzz, zzuf afl++, honggfuzz
12 PDFio afl++, honggfuzz,zzuf zzuf
14 wcf afl++, honggfuzz afl++ , honggfuzz
16 Godot afl++, honggfuzz, zzuf, OSSfuzz afl++, honggfuzz, OSS-Fuzz
17 OpendPG afl++, honggfuzz, afl afl++, honggfuzz, afl
20 Poppler afl++, honggfuzz, zzuf, libfuzzer -
22 Gifsicle afl++, honggfuzz, zzuf zuff

NN IR 2o ~NOO A~ ®WN

Fuzzing -

SUT

Blurhash
Gifdiff
ExrTools
OpendPG
pngquant
Fleet-protocol
libemf2svg
pdf2htmIEx
nsxiv
cJSON
collapse
PDFio
WaveCollapseFunction
Godot
OpendPG
Poppler
Gifsicle

new flaws found

input formats

yes
yes
yes

yes?

yes
yes
yes?

yes?

Overheads of ASan and MSan (group 5)

lable 1 gives an overview over the conducted experiments.

D Tool Time Number of Test Cases | Execution | Issues
initial — generated Speed Found

1 | AFL++ (no sanitizer) | > 4 days 1 — 1070000000 | 3000 exec/s 0

AFL++ with ASan | > 4 days 1 — 141000000 400 exec/s

oo

da | AFL++ with MSan 1 | 20 hours 1 — 11400000 160 exec/s

Unexpected outliers (group 5)

honggfuzz with MSan finding bugs in less than a minute

lable I gives an overview over the conducted experiments.

D Tool Time Number of Test Cases | Execution | Issues

initial — generated Speed Found
1 | AFL++ (no sanitizer) | > 4 days 1 — 1070000000 | 3000 exec/s 0
2 | AFL++ with ASan | > 4 days 1 — 141000000 400 exec/s 0
3a | AFL++ with MSan 1 | 20 hours 1 — 11400000 160 exec/s 0
3b | AFL++ with MSan 2 | 14 hours 27 — 6300000 125 exec/s 0
4 Zzuf 16 hours 254 — 1531274 26 exec/s 0
5 Zzuf with ASan 10 hours 254 — 835764 23 exec/s 0
6 Zzuf with MSan 6 hours 254 — 478234 22 exec/s 0
7 Honggfuzz 24 hours 254 — 5247903 61 exec/s 0
8 | Honggfuzz with ASan | 22.5 hours 254 — 4099435 51 exec/s 0
9 | Honggfuzz with MSan 1 min 204 — 1824 13 exec/s 3
10 Radamsa 16 hours 254 — 1910000 33 exec/s 0
11 | Radamsa with ASan | & hours 254 — 1220043 42 exec/s -
12 | Radamsa with MSan | 7 hours 254 — 1040000 41 exec/s 0

Table 1: Overview of used fuzzers

Overheads of ASan & MSan (group 17)

Experiment Tool Version | Time | #Test Cases | Crashes | Flaws
#1 AFL++ 2.5.0 2.5h 25.3M 35 0
#2 AFL++ with ASan 2.5.0 2.5h 4.32M 13 1
#3 AFL++ with ASan 2.5.0 7h 10.9M 115 1
#4 AFL++ with MSan 2.5.0 9h 1.38M 7 1
#5 AFL++ with ASan 2.5.0 4h 8.11M 18 0
#6 AFL++ with ASan 2.5.0 16h 31.56M 13 0
#7 AFL++ with ASan 2.5.0 16h 32.4M 19 0
#8 AFL++ with ASan 2.5.0 16h 32.6M 12 0
#9 AFL++ with ASan 2.5.0 16h 21.4M 20 0
#10 AFL++ with ASan 2.4.0 4.2h 8.43M 0 0
#11 AFL++ with ASan 2.4.0 4.2h 8.28M 0 0
#12 AFL++ with MSan 2.5.0 19h 2.TM 9 1
#13 AFL++ with MSan 2.5.0 19h 2.TM 10 1
#14 zzuf 2.5.0 15m 1M 0 0
#15 zzuf 2.0.0 17m 1M 142K 0
#16 zzuf with ASan 2.5.0 23m 1M 0 0
#17 Honggfuzz 2.5.0 5h 1.37TM 1 unique 0
#18 Honggfuzz with ASan 2.5.0 6h 1.23M 1 unique 0

Dumb fuzzers being dumb (group 17)

Experiment Tool Version | Time | #Test Cases | Crashes | Flaws
#1 AFL++ 2.5.0 2.5h 25.3M 35 0
2 AFL++ with ASan 2.5.0 2.5h 4.32M 13 1
#3 AFL++ with ASan 2.5.0 7h 10.9M 115 1
#4 AFL++ with MSan 2.5.0 9h 1.38M 7 1
#5 AFL++ with ASan 2.5.0 4h 8.11M 18 0
#6 AFL++ with ASan 2.5.0 16h 31.56M 13 0
#7 AFL++ with ASan 2.5.0 16h 32.4M 19 0
#8 AFL++ with ASan 2.5.0 16h 32.6M 12 0
#9 AFL++ with ASan 2.5.0 16h 21.4M 20 0
#10 AFL++ with ASan 2.4.0 4.2h 8.43M 0 0
#11 AFL++ with ASan 2.4.0 4.2h 8.28M 0 0
#12 AFL++ with MSan 2.5.0 19h 2.7TM 9 1
#13 AFL++ with MSan 2.5.0 19h 2.7TM 10 1
#14 zzuf 2.5.0 15m 1M 0 0
#15 zzuf 2.0.0 17m 1M 142K 0
#16 zzuf with ASan 2.5.0 23m 1M 0 0
F£17 Honggfuzz 2.5.0 5h 1.37TM 1 unique 0
#18 Honggfuzz with ASan 2.5.0 6h 1.23M 1 unique 0

Uniqueness

Does unique really mean unique?
Often not!

10

Hangs / time-outs

Are hangs/time-outs really hangs?
Often not!

11

Time-outs (group 22)

Experiment ID | Tool Time Runshexol Crashes Mhigue | Slmeou Hangs
test cases crashes | duration

1 AFL++ with ASan 24h 120 240,000 | 16 3s

2 AFL++ with ASan 1h 63 23,000 5 3s

3 AFL++ without ASan l1h 69 0 0 3s

4 Honggfuzz with ASan 24h 123 4669 1527 1s 579

5 Honggfuzz with ASan 1h 118 5996 38 Is 0

6 Honggfuzz without ASan | 1h 99 66 66 Is 13

) zzuf with ASan 24h 12 million ? ? 3s ?

My guess: time-out too short for honggfuzz

12

zuff not worse than ‘smart’ fuzzers

group 4

Dumb fuzzer (zzuf) vs smart fuzzers (AFL++, Honggfuzz)

In conclusion, our examination of the fuzzing tools zzuf, AFL++, and Honggfuzz revealed some
unexpected results. Contrary to our initial assumptions, zzuf, which is considered a "dumb" fuzzer,
did not exhibit a significant disadvantage in bug discovery compared to the "smart" fuzzers AFL++

and Honggfuzz.

13

zuff better than ‘smart’ fuzzers!

group 22 Fuzzing Gifsicle only resulted in crashes by using zzuf,

so zzuf outperformed AFL++, Honggfuzz there

but... different seed files were used

group 12

3.0.1 Without sanitization

ID Fuzzingtool Time Testcases Crashes Hangs
#1 zzuf 6h 1734159 0 102
#2 honggfuzz 6h 318798 0 17
#3 afl++ 24h 207425211 0 7
3.0.2 With ASan (address sanitization)
ID Tool Time Testcases Hangs Crashes Memoryleaks Buffer overflows
#1 zzuf 6h 953160 98 0 16681 5
#2 honggfuzz 6h n/a n/a 0 n/a n/a
#3 afl++ 24h 100857706 8 0 n/a n/a

Flaws programs vs inherently dangerous inputs?

On certain crafted input PDF files, PDFio would get stuck in a loop on 100 percent processor utilisation.
This can be used for a denial-of-service attack. Suppose we had some kind of hosted PDFio service. An
attacker would be able to send it such a crafted PDF file, and pin the CPU utilisation of the service at

100%, causing it to become unavailable.

Maybe these PDF files are inherently complex, and would
cause problems for other PDF viewers too?

15

Cm pLog (group 4)

Alternative to using branch coverage to guide fuzzing:

CmpLog instruments code to record values used in comparisons & then
using these values in mutations

ID_experimen | Tool Time Total number | Executions Issues found

t of executions | per minute

#1 AFL++ with 18 in 543.60k 10.0k 2 unique issues
ASan and parallel, 3
Cmplog hours each

#2 AFL++ with 1 vCpu on 977.50k 686.4k 2 unique issues
ASan Azure, b6

days 10
hours

#3 Honggfuzz 4 hours, 18 362.86k 5.04k 2 unique issues
with ASan cores
and Cmplog | available

#4 Honggfuzz 26 minutes, 44,56k 5.7k 2 unigue issues
with ASan 18 cores
and Cmplog available

#5 Honggfuzz 10 minutes, 20.66k 6.8k 2 unique issues
without 18 cores
instrumentat | available
ion

#o Zzuf without | 13 in +-2012.85k +-33.54k 2 unigue issues
instrumentat | parallel, 1
ion hour each

16

Beware of different goals of instrumentation

Instrumentation is used for two very different purposes in fuzzing:

1) to provide feedback to guide the mutation process

eg afl’s standard instrumentation to observe branch coverage
and CmplLog

2) to detect bugs

eg the instrumentation added by sanitisers
such as ASan, MSan, UBSan

17

Watch your prose

As the reader progresses through the following sections, they will gain valuable insights into the unique
strengths and limitations of each fuzzing tool, in addition to gaining a comprehensive understanding of the
security posture of the@iliftool. The findings in this report have the potential to contribute significantly to
the overarching discourse on software security, enabling efforts aimed at increasing the resilience of critical
software components.

By leveraging the formidable capabilities of fuzzing techniques and tools, this report represents a critical
step in strengthening open-source applications like Gifsicle and odt2txt and in strengthening the security

and reliability of file processing within today’s dynamic digital landscape.

18

	Slide 1: Fuzzing results
	Slide 2: Fuzzing – case studies
	Slide 3: Fuzzing – tools used
	Slide 4: Fuzzing – results
	Slide 5: Fuzzing – new flaws found
	Slide 6: Overheads of ASan and MSan (group 5)
	Slide 7: Unexpected outliers (group 5)
	Slide 8: Overheads of ASan & MSan (group 17)
	Slide 9: Dumb fuzzers being dumb (group 17)
	Slide 10: Uniqueness
	Slide 11: Hangs / time-outs
	Slide 12: Time-outs (group 22)
	Slide 13: zuff not worse than ‘smart’ fuzzers
	Slide 14: zuff better than ‘smart’ fuzzers!
	Slide 15: Flaws programs vs inherently dangerous inputs?
	Slide 16: CmpLog (group 4)
	Slide 17: Beware of different goals of instrumentation
	Slide 18: Watch your prose

