
Software Security

Information Flow
(Chapter 5 of lecture notes on language-based security)

Erik Poll

Digital Security group

Radboud University Nijmegen

Rules for expressions

e : t means e contains information of level t or lower

• variable x:t if x is a variable of type t

• operations e:t e’:t for some binary operation +

e+e' : t (similar for n-ary)

• subtyping e:t t  t'

e:t'

2

Rules for commands

s : ok t means s only writes to – ie. leaks to –level t or higher

• assignment e : t x is a variable of type t

 x:=e : ok t

• composition c1 : ok t c2 : ok t

 c1;c2 : ok t

• if-then-else e : t c1 : ok t c2 : ok t

 if e then c1 else c2 : ok t

• while e : t c : ok t

 while e do c : ok t

• subtyping c : ok t t  t’ NB ok t  ok t’ iff t  t'

 c : ok t’ (anti-monotonicity)

3

Beware

Beware of the confusing difference in directions

 e : t means e contains information of level t or lower

 s : ok t means s only writes to level t or higher

For people familiar will Bell – LaPadula access control :

there you have the same confusion,

in the “no read up” & “no write down” rules

The tricky issues

Implicit flows

 if (hi) { lo = ... }

 while (hi) { lo = ... }

are problematic

But isn’t

 if (hi) { ... }

 while (hi) { lo = ... }

already problematic?

If attackers can observe termination or observe timing

then any branching on confidential info is a potential leak

5

Rules for commands – incl. termination leaks

How do we make these rules save for termination or timing leaks?

 if-then-else e : t c1 : ok t c2 : ok t

 if e then c1 else c2 : ok t

 while e : t c : ok t

 while e do c : ok t

Only allow them for t = L (lowest level of confidentiality)

NB this is extremely restrictive, as you cannot do any branching on
confidential information

6

How can we be sure that such

type systems are “correct”?

Soundness & Completeness

• soundness of the type system:

 programs that are well-typed do no leak

• completeness of the type system:

 programs that do not leak can be typed

Is the type system on preceding slides

• sound?

• complete?

How can we determine this?

Counterexamples for completeness

It is easy to give examples that are not typable

 but do not leak, eg

• if (false) then { lo = hi; }

• lo = hi + 1 – hi;

• lo = hi; lo = 42;

For the last statement this depends on subtle differences in the

attacker model: can the attacker do observations during execution
or only at the end of execution ?

Soundness

• Is this type system sound?

• How do we define what we want to prevent?

• Recall the tricky examples of implicit flows

• This can be done using notion of non-interference,

 Non-interference gives a precise semantics for what

“information flow” means, and what attacker can observe

10

Soundness wrt non-interference

Definition For memories (or program states) μ and ν,

we write μ ≈L ν iff μ and ν agree on low variables.

Definition (Non-interference)

A program C does not leak information if, for all μ ≈L ν:

 if executing C in μ terminates and results in μ',

 and executing C in ν terminates and results in ν',

 then μ' ≈L ν'

Theorem (Soundness)

if C : ok t then C does not leak information

11

Termination as covert channel?

Definition (Non-interference)

A program C does not leak information if, for all μ ≈L ν:

 if executing C in μ terminates and results in μ',

 and executing C in ν terminates and results in ν',

 then μ' ≈L ν'

Does this rule out (non) termination as hidden channel (as
observation to distinguish two runs)?

Definition (Termination-sensitive non-interference)

A program C does not leak information if, for all μ ≈L ν:

 if executing C in μ terminates in μ',

 then executing C in ν also terminates, and results in some ν'

with μ' ≈L ν'

12

termination-insensitive

Other notions of secure information flow

Other definitions of what it means to be secure (in the sense

of non-leaking) are needed if

• if programs can throw exceptions

– exceptions are another covert channel, just like non-

termination

• if programs are multi-threaded or non-deterministic

– because execution of a program can then result in

several outcomes

• multi-threaded programs are non-deterministic,

because results can depend on scheduling

13

The problem with secure information flow

Does login(String pwd)

 leak confidential info?

Does String encryt(String s, Key k)
 produce confidential info?

14

The problem with secure information flow

• Practical problem with secure information flow:

the extreme restrictions it imposes, esp. when it come to

ruling out implicit flows

–

– Even if we do not worry about termination or timing leaks

• For most practical applications, we need a looser notion

of information flow than non-interference

• Some controlled form of declassification

15

Declassification

More permissive forms of information flow can allow

de-classification, eg

• for confidentiality:

– output of encryption operation is labelled as public,

even though it depends on secret data

– leaking one bit of information about password by login

procedure can be - has to be - acceptable

• for integrity:

– output of input validation routine may be trusted, even

though it depends on untrusted data

– output of routine that checks digital signature may be

trusted, even though it depends on untrusted data

16

Information Flow in practice

• Information flow for integrity – aka tainting – is commonly
used in SAST and DAST tools, as discussed last week
Eg

– PREfast

– perl tainting mode

– most SAST tools such as Fortify, CodeQL or Semmle

• These are often unsound and/or incomplete
 as concession to practicality

Pragmatic approaches typically worry less – if at all – about
implicit flows

Indeed, are implicit flows an issue for integrity?

• For confidentialy implicit flows can clearly be dangerous;
for integrity this is not so clear.

17

Summary

• What is information flow (informally)?

 explicit flows , implicit flows, covert channels

• How can we statically control information flow,

using type systems?

• How can we formally define what information flow is?

 non-interference,

 in termination-sensitive or termination-insensitive variant

You can read all this in Chapter 5 of the lecture notes on

Language-Based Security

18

Possible exam questions

• Explaining if there is unwanted information for integrity or

confidentiality in example programs

• Giving and/or motivating a typing rule for information flow

for termination-sensitive or insensitive

• Giving and/or explaining the definition of

non-interference, for integrity or confidentiality

 (but not the possibilistic & probabilistic versions)

	Slide 1: Software Security Information Flow (Chapter 5 of lecture notes on language-based security)
	Slide 2: Rules for expressions
	Slide 3: Rules for commands
	Slide 4: Beware
	Slide 5: The tricky issues
	Slide 6: Rules for commands – incl. termination leaks
	Slide 7: How can we be sure that such type systems are “correct”?
	Slide 8: Soundness & Completeness
	Slide 9: Counterexamples for completeness
	Slide 10: Soundness
	Slide 11: Soundness wrt non-interference
	Slide 12: Termination as covert channel?
	Slide 13: Other notions of secure information flow
	Slide 14: The problem with secure information flow
	Slide 15: The problem with secure information flow
	Slide 16: Declassification
	Slide 17: Information Flow in practice
	Slide 18: Summary
	Slide 19: Possible exam questions

