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Rules for expressions

e : t means  e contains information of level t or lower

• variable               x:t     if x is a variable of type t  

• operations           e:t   e’:t for some binary operation +

e+e' : t                 (similar for n-ary)

• subtyping            e:t     t  t'

e:t'                          
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Rules for commands

s : ok t means  s only writes to – ie. leaks to –level t or higher

• assignment       e : t    x is a variable of type t

                                      x:=e  : ok t

• composition         c1 : ok t   c2 : ok t

                                         c1;c2  : ok t  

• if-then-else       e : t      c1 : ok t     c2 : ok t

                                 if e then c1 else c2  : ok t  

• while                 e : t        c : ok t 

                               while e do c  : ok  t

• subtyping         c : ok t       t    t’                  NB  ok t  ok t’  iff   t  t' 

                               c : ok t’                                   (anti-monotonicity)
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Beware

Beware of the confusing difference in directions

    

 e : t       means  e contains information of level t or lower

 s : ok t  means   s only writes to level t or higher

For people familiar will Bell – LaPadula access control :          

there you have the same confusion,                                            

in the “no read up” & “no write down” rules



The tricky issues

Implicit flows  

                           if (hi) { lo = ... } 

                           while (hi) { lo = ... } 

are problematic

But  isn’t 

                           if (hi) { ... } 

                           while (hi) { lo = ... } 

already problematic? 

If   attackers can observe termination or observe timing 

then any branching on confidential info is a potential leak
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Rules for commands – incl. termination leaks

How do we make these rules save for termination or timing leaks?

     if-then-else       e : t      c1 : ok t     c2 : ok t

                                  if e then c1 else c2  : ok t  

      while                 e : t        c : ok t 

                               while e do c   :  ok  t

Only allow them for t = L   (lowest level of confidentiality )

NB this is extremely restrictive, as you cannot do any branching on 
confidential information
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How can we be sure that such                    

type systems are “correct”?



Soundness & Completeness

• soundness of the type system:

      programs that are well-typed do no leak

• completeness of the type system:

 programs that do not leak can be typed

Is the type system on preceding slides 

• sound?

• complete?

How can we determine this?



Counterexamples for completeness

It is easy to give examples that are not typable                                   

                                                             but do not leak, eg

• if (false) then { lo = hi; }

• lo = hi + 1 – hi;

• lo = hi; lo = 42;

For the last statement this depends on subtle differences in the 

attacker model: can the attacker do observations during execution 
or only at the end of execution ?



Soundness

• Is this type system sound?

• How do we define what we want to prevent?

• Recall the tricky examples of implicit flows

• This can be done using notion of  non-interference,   

 

    Non-interference gives a precise semantics for what 

“information flow” means, and what attacker can observe
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Soundness wrt non-interference

Definition  For memories (or program states) μ and ν,            

we write             μ ≈L ν iff μ and ν agree on low variables.

Definition (Non-interference) 

A program C does not leak information if, for all μ ≈L ν:

  if executing C in μ terminates and results in μ',

  and executing C in ν terminates and results in ν',

  then μ' ≈L ν'

Theorem (Soundness) 

if C : ok t  then C does not leak information
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Termination as covert channel?

Definition (Non-interference)   

A program C does not leak information if, for all μ ≈L ν:

  if executing C in μ terminates and results in μ',

  and executing C in ν terminates and results in ν',

  then μ' ≈L ν'

Does this rule out (non) termination as hidden channel (as 
observation to distinguish two runs)? 

Definition (Termination-sensitive non-interference) 

A program C does not leak information if, for all μ ≈L ν:

  if executing C in μ terminates in μ',

  then executing C in ν also terminates, and results in some ν' 

with μ' ≈L ν'
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Other notions of secure information flow 

Other definitions of what it means to be secure (in the sense 

of non-leaking)  are needed if

• if programs can throw exceptions

– exceptions are another covert channel, just like non-

termination 

• if programs are multi-threaded or non-deterministic

– because execution of a program can then result in 

several outcomes

• multi-threaded programs are non-deterministic,                      

because results can depend on scheduling
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The problem with secure information flow

Does  login(String pwd) 

     leak confidential info?  

Does   String encryt(String s, Key k)
    produce  confidential info?
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The problem with secure information flow

• Practical problem with secure information flow:                 

the extreme restrictions it imposes, esp. when it come to 

ruling out implicit flows

–  

– Even if we do not  worry about termination or timing leaks

• For most practical applications, we need a looser notion 

of information flow than non-interference

• Some controlled form of declassification  
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Declassification

More permissive forms of information flow can allow 

de-classification, eg

• for confidentiality: 

– output of encryption operation is labelled as public, 

even  though it depends on secret data

– leaking one bit of information about password by login 

procedure can be - has to be -  acceptable

• for integrity: 

– output of input validation routine may be trusted, even 

though it depends on untrusted data

– output of routine that checks digital signature may be 

trusted, even though it depends on untrusted data
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Information Flow in practice 

• Information flow for integrity – aka tainting – is commonly 
used in SAST and DAST tools, as discussed last week
Eg

– PREfast 

– perl tainting mode

– most SAST tools such as Fortify, CodeQL or Semmle  

• These are often unsound and/or incomplete 
                                                        as concession to practicality

Pragmatic approaches typically worry less – if at all – about 
implicit flows

Indeed, are implicit flows an issue for integrity?

• For confidentialy implicit flows can clearly be dangerous;                    
for integrity this is not so clear.
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Summary

• What is information flow (informally)? 

   explicit flows , implicit flows, covert channels

• How can we statically control information flow,    

using type systems? 

• How can we formally define what information flow is?

     non-interference,

     in termination-sensitive or termination-insensitive variant

You can read all this in Chapter 5 of the lecture notes on 

Language-Based Security
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Possible exam questions

• Explaining if there is unwanted information for integrity or 

confidentiality in example programs

     

• Giving and/or motivating a typing rule for information flow 

for  termination-sensitive or insensitive  

• Giving and/or explaining the definition of                            

non-interference, for integrity or confidentiality

    (but not the possibilistic & probabilistic versions)
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