
Software Security

Information Flow for Android Apps

Erik Poll

Digital Security group

Radboud University Nijmegen

1

Today

1. Possibilities to make the type system of Java richer, ie. more

expressive

– using Java annotations on types

2. Using this possibility to add types for information flow

• for Android apps

2

Recall from earlier lectures & lecture notes

⚫ Typing is a great way to prevent certain classes of bugs

by making certain kinds of bugs less likely

Eg. by keeping track of different kinds of string-like data:

different languages/formats,

different encodings,

different trust levels

Recall Safe Builders and Google’s Trusted Types approaches

UserName vs URL vs TrustedURL vs SQLstatement vs TrustedHTML vs ...

⚫ Type-safety (aka type-soundness) makes this even better

by making make certain kinds of bugs impossible

⚫ Type-safety provides the basis for more ‘safety’ guarantees, such as

⚫ visibility restrictions (using eg private fields)

⚫ sand-boxing (ie. code-based access control inside program)

⚫ immutable objects

3

Recap: typing for information flow

Recall from two weeks ago & lecture notes (Chapter 5):

⚫ Typing can be used to track information flows between several levels

⚫ using a lattice of security levels

⚫ for integrity or for confidentiality

⚫ Such type systems can be overly restrictive

⚫ Preventing implicit flows is tricky

if (... hi ...) { lo = ... } ; // not allowed

(Hence s : ok t meant s only writes to level t or higher)

⚫ Preventing termination-leaks or timing-leaks even more so

if (... hi ...) { ... } ; // not allowed

4

Java Annotations on Types

&

5

Java’s type system is too weak? Spot the defects

Java’s type system can catch certain errors at compile-time

boolean b = 2.0 + "hello";

but not all

System.console().readLine();

int i = a[4];

rs = stmt.executeQuery(query);

Spot the defects!

6

possible

NullPointer

possible NullPointer

or IndexOutOfBounds

possible SQL

injection?

Java’s type system is too weak? Spot the defect

100 int doubleLength(String s)

101 {return s.length * 2; }

...

...

10000 int j = doubleLength(null);

...

Spot the defect!

Java’s type system does not catch this problem. A human reader can.

Whose fault is this NullpointerException?

a) the programmer who wrote the code for doubleLength ?

b) or: the programmer who called doubleLength with a null argument ?

7

NullPointer

Exception

NullPointer

Exception

Type annotations

Programmer can enrich Java’s type system with annotations of the form

@SomeAnnotation

@SomeAnnotationWithElements(colour = "blue", age = "18")

@SomeAnnotationWithOneElement("blue")

These can be added to source code

• on declarations, eg of classes, fields, methods, ...

public @Colour("green") class Grass {...}

protected @Colour("red") int i;

private @isCreditCardNumber int getCCN() { ... }

• on uses of types (since Java 8, JSR308)

new @Colour("green") List(...);

8

Annotation example: @NonNull and @Nullable

int doubleLength(@NonNull String s)

{return s.length * 2; }

...

int j = doubleLength(null); // this is ill-typed!

9

Annotation example: @NonNull and @Nullable

int doubleLength(@Nullable String s)

{return s.length * 2; } // this is ill-typed!

...

int j = doubleLength(null);

Moral: even without any tool support, custom annotations can help to

• clarify assumptions & guarantees

– and hence assign blame

• help humans to spot bugs

Tool support (by type checker) could automate this, of course.

10

Fancier examples

You can combine type annotations with generics, eg

@NonEmpty List<@NonNull String>

Warning: annotations on array types can be hard to read, eg

@NonNull String []

What could this mean?

a non-null array of strings

or: an array of non-nulls strings?

This is the sort of thing you have to look up with the language manual

11

Type annotations & pluggable type systems

Why use annotations?

1. Annotations can simply be informal documentation to help the

programmer

2. Annotations can be used to help static analysis tools

3. Annotations on types can be used as ‘real’ types, to improve (or

refine) Java’s type system, if we have a type checker for them.

• Effectively, this is a special form of 2

The has been developed to make it easy to define

such custom type checkers (see http://CheckerFramework.org)

12

Annotation example: ensuring encrypted information

void send(@Encrypted String msg) {...}

// So send() expects an @Encrypted string

@Encrypted String encrypt(String s, Key k) {...}

// So encrypt() produces an @Encrypted string

...

@Encrypted String msg1 = ...;

send(msg1); // OK?

String msg2 =;

send(msg2); // OK?

send(encrypt(msg2,key)); // OK?

13

Annotation example: ensuring encryption of network traffic

void send(@Encrypted String msg) {...}

// So send() expects an @Encrypted string

@Encrypted String encrypt(String s, Key k) {...}

// So encrypt() produces an @Encrypted string

...

@Encrypted String msg1 = ...;

send(msg1); // OK!

String msg2 =;

send(msg2); // Warning!

send(encrypt(msg2,key)); // OK!

Moral of the story: we can use custom annotations to help prevent certain

categories of flaws

14

Annotation example: ensuring encryption of network traffic

The (one line!) definition of a typechecker for @Encrypted annotations

using the Checker framework

@Target(ElementType.TYPE_USE)

@SubtypeOf(Unqualified.class)

public @interface Encrypted {}

15

SPARTA:

Static Program Analysis

for Reliable Trusted Apps

16

Type system for information flow in Java apps

Collaborative Verification of Information Flow for a High-Assurance App

Store

by

Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart

Pernsteiner, Franziska Roesner, Karl Koscher, Paulo Barros, Ravi

Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Wu

CCS 2014

This paper presents SPARTA

(Static Program Analysis for Reliable Trusted Apps)

More info at http://www.cs.washington.edu/sparta

17

Context: current generation of app stores

• App stores have some approval process

• They have to approve hundreds of apps per day

• Problem: all app stores have approved malware

• Current best practice: run some static analysis tool (which does not

have too many false positives) and then remove malware when it is

reported

18

Fake WhatsApp app in Google Playstore in Nov. 2017,

with > 1 million installs

19

Security worries in apps

Malware can

1. steal user information (location, installed apps, ..)

2. steal user credentials (passwords, ...)

3. make premium calls or send expensive SMS

4. send SMS advertising

5. improve website rankings in search engine results

• this is a form of SEO (Search Engine Optimisation) that search

engines disapprove of

6. do some purposeless destruction

7. ransomware

SPARTA can prevent 1-4

• but not phishing as way to steal credentials, which is also a form of 2

20

Better app stores offering higher assurance level

• Could a specialised app store provide higher level of assurance?

Eg for special categories of apps or users, such as

– financial or medical apps,

– corporate or government users

• Could there be a business model in this?

To make extra effort commercially viable or even profitable.

• Bottlenecks:

1. what to check ?

2. how to check?

3. can this be done at reasonable cost (time & effort)?

21

SPARTA

• Security type system for Android apps

– to guarantee information flow policies,

that rule out unwanted information leaks

• Java annotations used to annotate code

• Checker framework is used to type check these

– but some manual checks for declassification,

incl. manual checks for implicit flows in conditional statements

• Collaborative verification, where

1. code developer does some work by adding annotations

2. human verifier runs checker & performs manual checks

22

Collaborative verification model

• Developer provides

• App store analysist

1. checks if information flow policy is acceptable (manually)

2. runs the type checker

3. checks the declassifications (manually)

23

Information

Flow Policy

Annotated

Source

Code

app
description

declassification
justifications

1
2 3

What to check? Information flow policies!

The target: preventing malware with unwanted information flows

Information flow policies specified using sources and sinks,

where information comes from or goes to

• Many sources and sinks already occur as Android permissions

• Some things can be both source and sink, eg. the file system

24

Example sinks

• the display

• the internet

• SMS sending

• the file system

Example sources

• camera

• location information

• SMS reading

• the file system

Android permissions vs information flow policies

• An app can have Android permission to access

– location information

– internet connection

– camera

– file system

• As an information flow policy, the app could only have permission to

– save camera image to disk (ie not to send it over the internet)

– save location to disk (eg, to save location with a photo)

– download updates over the internet connection

This is much more fine-grained! But maybe still not perfect…

As discussed two weeks ago, information flow policies are more

expressive than conventional access control policies.

25

Example information flow policies

READ_SMS -> DISPLAY

USER_INPUT -> CALL_PHONE

CAMERA -> DISPLAY, DATA

LOCATION -> INTERNET(maps.google.nl)

Sources and sinks may be parameterised.

Notation: -> is also written as ! in the paper

26

Transitivity?

Does the policy

CAMERA -> FILESYSTEM

FILESYSTEM -> INTERNET

also allow

CAMERA -> INTERNET ?

27

Transitivity & white-washing

Transitive flows must be explicitly specified.

So the policy

CAMERA -> FILESYSTEM

FILESYSTEM -> INTERNET

must also include

CAMERA -> INTERNET

if photes are allowed to be sent over the internet.

Idea: make sure an app cannot whitewash data via file system if this was

not explicitly intended.

Parameters could also rule out such issues, eg

CAMERA -> FILESYSTEM("images/*")

FILESYSTEM("config/*") -> INTERNET

28

Information flow types: sources and sinks

@Source Where might this info come from?

@Sink Where might this info go to?

These type annotations take a parameter (or element, in Java

terminology) and are then applied to variables or parameters.

For example

@Source(CAMERA) - this info comes, or might come, from the camera

@Source(LOCATION) - this info may be location information

@Sink(INTERNET) - this info may be sent over the internet

@Source(INTERNET,CAMERA) - this info may come from camera or

internet

29

Example type annotations

Suppose the Android API includes methods

public static void sendToInternet(String s);

public static String readGPS();

What would be good annotations of these methods ?

public static void sendToInternet(@Sink(INTERNET) String s);

public static @Source(LOCATION)String readGPS();

30

Example typings

Given the API methods

void sendToInternet(@Sink(INTERNET) String message);

@Source(LOCATION)String readGPS();

What would be a correct annotation of the app code below?

String loc = readGPS();

sendToInternet(loc);

31

app annotations are to be provided

by app developer and are not trusted

Example typings

Given the API methods

void sendToInternet(@Sink(INTERNET) String message);

@Source(LOCATION)String readGPS();

What would be a correct annotation of the app code below?

@Source(LOCATION)@Sink(INTERNET) String loc = readGPS();

// loc may receive LOCATION info

// and may be sent over internet

sendToInternet(loc);

This code is only acceptable if the policy includes LOCATION->INTERNET

32

API annotations are

given and trusted

Example typings

Which of these annotations would be rejected by the type checker?

1. @Source(LOCATION) String loc = readGPS();

sendToInternet(loc);

• Not type correct, because in 2nd line loc cannot be sent over internet

2. @Sink(INTERNET) String loc = readGPS();

sendToInternet(loc);

• Not type correct, because in 1st line loc can’t store location information

3. String loc = readGPS();

sendToInternet(loc);

• Not type correct, because of same reasons as 1 and 2

4. @Source(LOCATION)@Sink(INTERNET) String loc = readGPS();

sendToInternet(loc);

• Type correct, but does require policy includes LOCATION->INTERNET

Moral of the story: programmers have to get annotations right to make

their code typecheck, and cannot cheat!
!33

Is this code ok?

@Source(SMS) String s = ... ;

@Source(SMS,INTERNET) String t = s;

Yes, as @Source(SMS) is a subset of @Source(SMS,INTERNET)

@Source(SMS) @Sink(SMS,INTERNET) String msg1 = ...;

@Source(SMS,INTERNET) @Sink(SMS) String msg2 = msg1;

Yes, as @Sink(SMS)is a subset of @Sink(SMS,INTERNET)

Beware: with aliasing between mutable data structures you have to be
careful!

Eg having two references to the same char[] with different annotations, say
@Sink(SMS,INTERNET) and @Sink(SMS), would cause unsoundness

34

Is this code ok?

char[] with different annotations, say

@Sink(SMS,INTERNET) char[] a;

@Sink(SMS) char[] b;

a = b; // Obviously disallowed,

// as now data b can be sent over the internet

b = a; // Less obviously incorrect:

// Code elsewhere could sticks data in b and expect

// that this info can only be sent to SMS

// But that info can only be sent over the internet

// usng the referece a.

35

Subtyping

There is a natural subtyping relation on types.

For example,

@Source(SMS) is a subtype of @Source(SMS,INTERNET)

@Sink(SMS,INTERNET) is a subtype of @Sink(SMS)

Note the opposite direction of the subtype relation for Sources and Sinks.

• Recall: we also saw this duality in type systems for information flow

for reading information of some level

vs writing information to a variable of some level

36

The subtype relation forms a lattice

37

@Source(ANY) = @Source{LOCATION, INTERNET, SMS, CAMERA, ...}

Subtyping

The subtype relation gives rise to a subtyping rule in the type system.

• Eg, if

@Source(SMS) String s;

then s also has type @Source(SMS,INTERNET)

Recall subtyping rule (aka subsumption) from two weeks ago and

assiocated lecture notes

e : t t t'

e : t'

38

Quiz: is this app code ok & does it meet policy?

App code:

@Source(LOCATION)@Sink(INTERNET)String loc = readGPS();

sendToInternet(loc);

Policy:

LOCATION -> INTERNET

39

Quiz: is this app code ok & does it meet policy?

App code:

@Source(LOCATION)@Sink(INTERNET)String loc = readGPS();

sendToInternet(loc);

Policy:

LOCATION -> SMS

LOCATION -> SMS,INTERNET

40

Quiz: is this app code ok & does it meet policy?

App code:

@Source(LOCATION)@Sink(SMS)String loc = readGPS();

sendToInternet(loc);

Policy:

LOCATION -> SMS

41

Quiz: is this app code ok & does it meet policy?

App code:

@Source(LOCATION)@Sink(SMS)String loc = readGPS();

sendToInternet(loc);

Policy:

LOCATION -> INTERNET

The code does meet the policy, but the app developer screwed up the

annotations, so the type checker will complain!

42

The tricky cases...

43

Problematic cases

• The SPARTA type system is overly restrictive

Some ‘legal’ programs (which do not violate the policy) will be

rejected

• ie. there are false positives

• Solution to this:

– The type system provides explicit loopholes for this

– Any use of these loopholes will have to be manually verified

44

Problem 1: heterogeneous arrays

String[] a;

a[0] = readGPS();

a[1] = readSMS();

What would be a good annotation of the code above, using the parameter

LOCATION and SMS?

45

Problem 1: heterogeneous arrays

@Source({LOCATION, SMS}) String[] a;

a[0] = readGPS();

a[1] = readSMS();

What would be a good annotation of the code above, using the parameter

LOCATION and SMS?

This is not the most accurate description, we ‘lose’ some information, namely that

the two array elements have different types.

The annotation system is not expressive enough to talk about such heterogenous

arrays.

46

Problem 1: heterogeneous arrays

@Source({LOCATION, SMS}) String[] a;

a[0] = readGPS();

a[1] = readSMS();

String loc = a[0];

What would be a good annotation of the code above?

47

Problem 1: heterogeneous arrays

@Source({LOCATION, SMS}) String[] a;

a[0] = readGPS();

a[1] = readSMS();

@Source({LOCATION, SMS})String loc = array[0];

We would like to be more precise and write

@Source(LOCATION) String loc = array[0];

but then the type checker will complain, even though this complaint is a false

positive

• as this declassification is ok

48

Problem 1: heterogeneous arrays

@Source({LOCATION, SMS}) String[] a;

a[0] = readGPS();

a[1] = readSMS();

@SuppressWarnings("flow") // Always returns location data

@Source({LOCATION}) String loc = array[0];

App developer can use this to surpress false positives.

But the human verifier will have to manually verify these!

49

Problem 2: Dealing with implicit flows

@Source(USER_INPUT) long pin = getPINCode();

long i=0;

while (true) { if (i == pin) { sendToInternet(i); }

i++;

}

Possible approaches

1. Ignoring implicit flows: this would be unsound, and allow leaking of the PIN

code

2. Classic, sound approach, as in lecture notes:

inside an if-statement we can only send stuff over the internet

if all variables used in the guard can be sent over the internet.

This becomes very restrictive!

3. Solution used in SPARTA: introduce a new sink CONDITIONAL

50

Problem 2: Dealing with implicit flows

@Source(USER_INPUT) long pin = getPINCode();

long i=0;

while (true) { if (i == pin) { sendToInternet(i); }

i++;

}

SPARTA’s approach to implicit flows

• New sink CONDITIONAL

• Flows to CONDITIONAL if classified information is used in a condition

• Type checker will warn about these

• Human verifier will have to check these

51

USER_INPUT -> CONDITIONAL

Overview: SPARTA’s collaborative verification model

• Developer provides

• App store analysist

1. checks if information flow policy is acceptable

2. runs the type checker

3. manually checks the declassifications

52

Information

Flow Policy

Annotated

Source

Code

app
description

declassification
justifications

1
2 3

Trusted Computing Base (TCB)

What is in the Trusted Computing Base? And what not?

1. The Android OS, incl the Java Virtual Machine

2. The type checker for annotations

3. The Java compiler & byte code verifier

4. The annotations provided for the APIs

5. The annotations provided by the app developer

6. The human verifier

53

Trusted Computing Base (TCB)

What is in the Trusted Computing Base? And what not?

1. The Android OS, incl the Java Virtual Machine YES

2. The type checker for annotations YES

3. The Java compiler & byte code verifier YES

4. The annotations provided for the APIs YES

5. the annotations provided by the app developer NO

6. The human verifier YES

54

Tricky case: generics

• Java annotations interact with generics in the obvious way, eg

List <@Source(USER_INPUT) @Sink(SMS) String> myList;

though reading these can get tricky…

55

Problem 3: generics & polymorphic functions

How to annotate a function such as

static String convertToLowerCase(String s) ?

This function is polymorphic: it preserves any type annotation on the input.

So

1. if x is @Sink(SMS) then convertToLowerCase(x) is @Sink(SMS)

2. if x is @Sink(INTERNET) then convertToLowerCase(x) is @Sink(INTERNET)

But we cannot a single annotation that covers both 1 and 2…

Solution: in annotations we can quantify over all type annotations, using a special type
annotation variable @PolySource

@PolySource String convertToLowerCase(@PolySource String s)

Recall we had the same problem with tainting annotation for array_copy with

PREfast

56

Case study with SPARTA (see paper)

• Analysis of 72 apps written by Red Team

• (Relatively low) annotation burden: 6 annotations/100 loc

• Auditing (ie human verifier) burden: 30 minutes/ kloc

– but is this acceptable for several Mbytes of code?

• 96% of information flow related malware found

(It’s hard to find in the paper what the problem with the remaining 4% is, but it

is claimed that extensions discussed in 2.10 would fix them)

• This was 82% of all malware in these apps, as some malware behaviour was

not about unwanted information flow

57

To read

Collaborative Verification of Information Flow for a High-Assurance App

Store

by

Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart

Pernsteiner, Franziska Roesner, Karl Koscher, Paulo Barros, Ravi

Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Wu

CCS 2014

See link on course webpage.

58

Types for security: this week vs three weeks ago

SPARTA

Eg @Source(LOCATION)

@Sink(SMS)

• Types (type annotations) for

confidentiality in Java

• Could we use a SPARTA-like

approach for integrity too?

YES!

• Implicit flows are a clear problem

for confidentiality

Google’s Trusted Types

aka API hardening

Eg SafeScript SafeUrl

TrustedResourceUrl SafeHtml

• Types for integrity aka tainting

in JavaScript

• Not so clear if implicit flows are a

problem for integrity

59

Some end of year reflection

-

not exam material

60

one of 10 Adobe bulletins last week

[Source: https://helpx.adobe.com/security/Home.html] 61

Daniel Miessler, https://danielmiessler.com/p/the-reason-software-remains-insecure/

62

• adsd

63

[Slide by Christiaan Brand, BlackHat 2019; data from Google Transparency Report]

	Slide 1: Software Security Information Flow for Android Apps
	Slide 2: Today
	Slide 3: Recall from earlier lectures & lecture notes
	Slide 4: Recap: typing for information flow
	Slide 5: Java Annotations on Types &
	Slide 6: Java’s type system is too weak? Spot the defects
	Slide 7: Java’s type system is too weak? Spot the defect
	Slide 8: Type annotations
	Slide 9: Annotation example: @NonNull and @Nullable
	Slide 10: Annotation example: @NonNull and @Nullable
	Slide 11: Fancier examples
	Slide 12: Type annotations & pluggable type systems
	Slide 13: Annotation example: ensuring encrypted information
	Slide 14: Annotation example: ensuring encryption of network traffic
	Slide 15: Annotation example: ensuring encryption of network traffic
	Slide 16: SPARTA: Static Program Analysis for Reliable Trusted Apps
	Slide 17: Type system for information flow in Java apps
	Slide 18: Context: current generation of app stores
	Slide 19:
	Slide 20: Security worries in apps
	Slide 21: Better app stores offering higher assurance level
	Slide 22: SPARTA
	Slide 23: Collaborative verification model
	Slide 24: What to check? Information flow policies!
	Slide 25: Android permissions vs information flow policies
	Slide 26: Example information flow policies
	Slide 27: Transitivity?
	Slide 28: Transitivity & white-washing
	Slide 29: Information flow types: sources and sinks
	Slide 30: Example type annotations
	Slide 31: Example typings
	Slide 32: Example typings
	Slide 33: Example typings
	Slide 34: Is this code ok?
	Slide 35: Is this code ok?
	Slide 36: Subtyping
	Slide 37: The subtype relation forms a lattice
	Slide 38: Subtyping
	Slide 39: Quiz: is this app code ok & does it meet policy?
	Slide 40: Quiz: is this app code ok & does it meet policy?
	Slide 41: Quiz: is this app code ok & does it meet policy?
	Slide 42: Quiz: is this app code ok & does it meet policy?
	Slide 43: The tricky cases...
	Slide 44: Problematic cases
	Slide 45: Problem 1: heterogeneous arrays
	Slide 46: Problem 1: heterogeneous arrays
	Slide 47: Problem 1: heterogeneous arrays
	Slide 48: Problem 1: heterogeneous arrays
	Slide 49: Problem 1: heterogeneous arrays
	Slide 50: Problem 2: Dealing with implicit flows
	Slide 51: Problem 2: Dealing with implicit flows
	Slide 52: Overview: SPARTA’s collaborative verification model
	Slide 53: Trusted Computing Base (TCB)
	Slide 54: Trusted Computing Base (TCB)
	Slide 55: Tricky case: generics
	Slide 56: Problem 3: generics & polymorphic functions
	Slide 57: Case study with SPARTA (see paper)
	Slide 58: To read
	Slide 59: Types for security: this week vs three weeks ago
	Slide 60: Some end of year reflection - not exam material
	Slide 61: one of 10 Adobe bulletins last week
	Slide 62
	Slide 63

