Fuzzing results

Cristian Daniele
Patrick Lodeweegs

Erik Poll

Digital Security group
Radboud University Nijmegen

Fuzzing — case studies

Case study input format

1 LunaSVG SVG

3 libspng PNG

4 svg2gcode SVG

5 impr BMP

8 simd PNG

10 svg2ass SVG

12 bmp2jpeg BMP

15 stenography PNG and ZIP

(encoding and decoding)

16 OpenTTD OpenTTD save file
19 PNGcrush PNG
20 PDFALTO PDF
21 PDF-Parser-C PDF

23 ROC Toolkit ROC audiostream

Fuzzing - tools used

LunaSVG afl++, Honggfuzz, zzuf ASan
3 libspng afl++, zzuf, Radamsa ASan, MSan, valgrind
4 svg2gcode EIII:';I-‘;ZI-ZIZ:\ggfuzz, 2 A0p (SR ASan, UBSan
5 impr afl++, Honggfuzz, zzuf ASan
3 simd afl++, Honggfuzz ASan, MSan
10 svg2ass afl++, Honggfuzz, zzuf, Radamsa, ASan, MSan
12 bmp2jpeg afl++, HonggFuzz, zzuf Asan
15 stenography afl++, HonggFuzz, zzuf, Radamsa Asan, valgrind
16 OpenTTD afl++, Honggfuzz, zzuf ASan, MSan
19 PNGcrush afl++, HongFuzz, zzuf ASan
20 PDFALTO afl, Zzuf, Hongfuzz, Radamsa ASan
21 PDF-Parser-C afl, HonggFuzz, zzuf ASan, MSan

23 ROC Toolkit 2N+ Libfuzzer, Radamsa, ASan, UBSan
(Hongfuzz, Angora, zzuf)

Fuzzing — bugs found?

LunaSVG afl++, Honggfuzz, zzuf yes (in dependency)
3 libspng afl++, zzuf, Radamsa yes
4 svg2gcode iz‘llc)+';l-‘;zl-zlg?ggfuzz, zzuf, Radamsa, yes
5 impr afl++, Honggfuzz, zzuf yes
3 simd afl++, Honggfuzz yes
10 svg2ass afl++, Honggfuzz, zzuf, Radamsa, yes
12 bmp2jpeg afl++, HonggFuzz, zzuf yes
15 stenography afl++, HonggFuzz, zzuf, Radamsa yes
16 OpenTTD afl++, Honggfuzz, zzuf no
19 PNGcrush afl++, HongFuzz, zzuf yes
20 PDFALTO afl, Zzuf, Hongfuzz, Radamsa yes
21 PDF-Parser-C afl, HonggFuzz, zzuf yes
23 ROC Toolkit afl++, (Hongfuzz), Libfuzzer, yes

(Angora), Radamsa, (zzuf)

Did anyone report bugs?

Or even commit bug fixes?

Typical performance numbers (group 3)

ID _Experiment Tool Time (hrs) Number of Test Cases Issues Found

1 AFL4+ 14.3 220.667.240 0 errors
2 zznf 41.6 29.000.000 () errors
3 radamsa 22 9.647.000 0* errors

afl++ is typically faster than the other tools

(though group 12 reported Honggfuzz was faster than afl++)

Typical performance numbers (group 4)

ID_Experiment | Tool + Sanitizer Time # Test Cases | Issues Found

#1 AFL++ 3 hrs 37 mins 19.6 million 120 crashes, 0 hangs
##2 zzuf 3 hrs 4 million 856 crashes, () hangs
#3 Radamsa 3 hrs 4 million 124 crashes, 0 hangs
#4 HonggFuzz 4 hrs 1.68 million 693 crashes, 0 hangs
#5 AFL++ with ASan 3 hrs 9 mins 5.5 million 131 crashes, 0 hangs
#6 Radamsa with ASan 3 hrs 4 million 159 crashes, 0 hangs
#7 HonggFuzz with ASan 4 hrs 1.05 million | 90 crashes, 0 hangs

#7 LibFuzzer with ASan 3 hrs 7 million 251 crashes, 0 hangs
#8 AFL++ with UBSan 10 hrs 15.3 million 124 crashes, 0 hangs
#9 Radamsa with UBSan 3 hrs 4 million 112 crashes, 0 hangs

Rule of thumb: if dumb fuzzers like zzuf and Radamsa find bugs then
the code is pretty bad.

Is ASan/MSan overhead worth it?

ID_Experiment | Tool + Sanitizer Time # Test Cases | Issues Found

#1 AFL++ 3 hrs 37 mins 19.6 million 120 crashes, 0 hangs
#2 zzuf 3 hrs 4 million 856 crashes, 0 hangs
#3 Radamsa 3 hrs 4 million 124 crashes, 0 hangs
#4 HonggFuzz 4 hrs 1.68 million | 693 crashes, 0 hangs
#5 AFL++ with ASan 3 hrs 9 mins 5.5 million 131 crashes, 0 hangs
#6 Radamsa with ASan 3 hrs 4 million 159 crashes, 0 hangs
#7 HonggFuzz with ASan 4 hrs 1.05 million | 90 crashes, 0 hangs

#7 LibFuzzer with ASan 3 hrs 7 million 251 crashes, (0 hangs
#8 AFL++ with UBSan 10 hrs 15.3 million 124 crashes, 0 hangs
#9 Radamsa with UBSan 3 hrs 4 million 112 crashes, 0 hangs

Sanitizers had a huge impact on afl++ performance - cither with ASan or UBsan it performed
almost 4 times slower with not a huge number of additional bugs found.

Typical ASan & MSan overhead (group 10)

Fuzzer | sanitizer Time # of execs | # of cycles done | # of crashes | # of hangs
afl++ none 9h 48min 8.43M 295 18 16
afl++ ASan 10h 48min 2.90M 6 26 13
afl++ MSan 8h 19min 573K 19 i B | 3

Valgrind (group 3)

ID _Experiment Tool Time (hrs) Number of Test Cases Issues Found
I AFLA4+ with ASan 14.3 22.052.208) errors
2 zzuf with ASan* 26.2 2.800.000 1797** errors
3 radamsa with ASan 14.8 1.929.000 39.499** errors
ID _Experiment Tool Time (hrs) Number of Test Cases Issues Found
1 zzuf with valgrind 62.4 210.000 too many® errors

Valgrind is probably too slow (compared to ASan & MSan) to use
while fuzzing

It may still be useful for post-hoc analysis of bugs

10

Surprising dumb fuzzer successes (group 3)

ID _Experiment Tool Time (hrs) Number of Test Cases Issues Found
I AFL+4+ with ASan 14.3 22.052.208 () errors
2 zzufl with ASan* 26.2 2.800.000 1797** errors
3 radamsa with ASan 14.8 1.929.000 39.499%* errors

Sometimes - surprisingly - zzuf and Radamsa beat afl++

Unsurprisingly, they then find many instances of the same bug

Still, | think group 12 is right to say that

Another observation is that the 'dumb’ fuzzers such as Zzuf are
no longer worth using. Evolution-based fuzzers can find more bugs
faster. Obviously, given enough time, Zzuf would probably find a

random mutation that does indeed crash the program, but this may
take a long time.

11

Unexplained mysteries? [group 19]

For honggfuzz, the average speed on the runs with ASan was higher than without it and hongg-
fuzz did manage to find a crash. Adding a dictionary significantly decreased the speed and did
not add anything to honggfuzz’s ability to find crashes. For honggfuzz it seems that the speed
and quality of the fuzzing is at its best when using a sanitizer without a dictionary.

12

ASan overhead

Surprising lack of ASan overhead

ID_experiment

#1

#3

#2

#5

X Number of
Tool Time
test cases

AFL 12hr 12k
AFL + ASan 3hr 4k
zzuf 15min 5k
zzuf + .

15min 5k
ASan

[group 20]

Issues found

no errors, 114
crashes, 51
hangs

no errors, 1
crashes, no
hangs

2.319k errors,
no crashes, no
hangs

2.319k errors,
no crashes, no
hangs

13

ASan overhead [group 19]

Even more surprising: ASan speeding things up

For honggfuzz, the average speed on the runs with ASan was higher than without it and hongg-
fuzz did manage to find a crash. Adding a dictionary significantly decreased the speed and did
not add anything to honggfuzz’s ability to find crashes. For honggfuzz it seems that the speed
and quality of the fuzzing is at its best when using a sanitizer without a dictionary.

14

Spot the security flaw [CVE-2024-320, group 8]

while (_data[_pos] == value && _pos < _size)
_pos++;
return _pos < _size;

15

Security fix

while (_pos < _size && _datal[_pos] == value)
_pos++;
return _pos < _size;

Seed selection [group 4]

We ran fuzzers on four small (max. 370 bytes) . svg files and in our opinion they were enough.
We tried to introduce a more complex file (515 Kb), but then fuzzers were performing very
poorly (afl++ somectimes even refused to work, because a single test case took more than a
sccond). Changing initial sceds didn’t do much - eventually fuzzers found the same bugs.

Itis to be expected that a file of 500 Kb is too big for fuzzing

It is nice to see that different seeds still reveal the same bugs

17

Seed selection: using ChatGTP? [group 19]

Interesting idea, but not sure if it will be any help

We ran all of the fuzzers on the latest version of pngcrush (1.8.1) and the earliest (on Github’s
releases) which is 1.7.27. The reason for using this specific version is because there is a CVE on
this version with a off-by-one error [1]. Unfortunately, we could not find or reproduce a PNG
to trigger the CVE. We used 17 files as input or seed files. These files are valid PNGs, specific
test cases and potential test cases. We got these files using two methods. We asked ChatGPT
to try and generate files which could result in problems for our program, this resulted in 35 files.
We also searched GitHub repositories for images used for testing and images that were reported
to have interesting outcomes.

18

Checksum issues? [group 19. And other PNG groups?]

As an optimizer for PNG images, pngcrush requires a valid PNG file as input to process it as
it will otherwise be rejected. However, utilizing fuzzing methods to generate a valid input is
far from a trivial task, as the PNG format is known for its complexity and strict adherence to
its specification. Every PNG file is organized into a series of chunks and each chunk includes
a checksum for error detection. Mutating the chunk data without updating the checksum will
thus cause the entire chunk, and potentially the entire file, to be rejected. The PNG dictionary
of AFL++ is not of help here as it can only enforce the test cases to adhere to the general png
chunk structure, but cannot recompute the checksums.

As a benchmark to gauge how much of the generated PNG’s by AFL++ pass pngcrush’s vali-
dation checks, we adapted the codebase with additional logging output triggered at every exe-
cution of the main loop. We ran this set-up for 20880 iterations, of which the main loop was
reached 7 times, yielding an efficiency of (0.034%. It is important to note that this percentage is
only a rough indicator of the test case generation efficiency as the selection of seed files has a
lot of impact on the effectiveness of evolutions and only one set of seed files was used for this
experiment.

19

Coverage (group 16)

Fuzzer #'Tests Crashes Hangs Map coverage
AFL++ 1.52M 0 12 4.56%
AFL++4 with ASan 831K 0 23 0.71%

It is also somewhat surprising that AFL++4 without a sanitizer reported a significantly
higher map coverage than AFL++ with ASan (4.56% and 0.71% respectively). We think this
is related to the lower number of executions with ASan, but it is also possible that using a
sanitizer changes the way new inputs are selected (preferring inputs that AFL++ thinks may
show issues for the given sanitizer), leading the fuzzer to getting stuck in exploring a smaller
part of the code base. Another possibility is that the sanitizer adds extra branches for its checks
that are never triggered, thus lowering the coverage.

1

Even if we account for the fact that we focussed on only a small part, it is still surprising
that there is such a large difference between the two ways of fuzzing. We should also note that
the fuzzers ran for a relatively short period of time, and that the low coverage may also be
(partially) caused by the short run time.

20

Crashl/error = security issue or not? [group 23]

The problem we had with Honggluzz is that every error handle or normal return would be marked as
a crash while we would not mark it as a crash. Take for example figure 6, here we can sce roc-send
handling the invalid input given by Honggfuzz and marking it as an error. This is not a crash and
is intended behavior. But Honggfuzz sees this as a crash.

rootml2edbd9d8cib: /roc-toolkith roc-send --sources=rtp://127.0.0.1:2345 --input=Ffile:///fi
edump/HongFuzz/findings/SIGABRT.PC.7efc7aba3flc.5TACK. lacfac32bec.CODE. -6.ADDR. 0. INSTR.mov_

_%eax,%wried.fuzz

21

Crash on assertion error = security issue? [group 8]

AFL also find quite some duplicates crashes, however it did also start with the same set of files each run.
This lead to the same crashes multiple times. It did also sometimes find some assertion errors, however we
did not find that relevant enough to investigate since those were not possible to turn off in the configuration.

22

4.1

Flaws Detected

Bug 1: In the function nsvg__parseFloat, a NULL string was passed to sscanf,
resulting in a segmentation fault. This occurred due to insufficient validation of input
before parsing.

Bug 2: Also in nsvg__parseFloat, malformed strings caused sscanf to misbchave.
This was due to improper handling of unexpected input formats, leading to undefined
behavior.

Bug 3: In the function nsvg__parseAttr, a NULL valuec was passed as the value
parameter in comparisons or calls to functions like stremp. This caused segmentation
faults due to invalid memory access.

Bug 4: In nsvg__parseSVG, attempting to parsc NULL or malformed attribute values
(c.g., empty strings) without validation led to segmentation faults during operations
such as sscanf and strstr.

Bug 5: In nsvg__parseFloat, the lack of validation for the format of input strings
allowed invalid characters to pass through, leading to misbchavior and potential crashes
during parsing.

23

4.1

Flaws Detected

Bug 1: In the function nsvg__parseFloat, a NULL string was passed to sscanf,
resulting in a segmentation fault. This occurred due to insufficient validation of input
before parsing.

Bug 2: Also in nsvg__parseFloat, malformed strings caused sscanf to misbchave.
This was due to improper handling of unexpected input formats, leading to undefined
bchavior.

Bug 3: In the function nsveg__parseAttr, a NULL valuc was passed as the value
7

parameter in comparisons or calls to functions like stremp. This caused segmentation

faults due to invalid memory access.

Bug 4: In nsvg__parseSVG, attempting to parse NULL or malformed attribute values
(c.g., empty strings) without validation led to segmentation faults during operations
such as sscanf and strstr.

Bug 5: In nsvg__parseFloat, the lack of validation for the format of input strings
allowed invalid characters to pass through, leading to misbchavior and potential crashes
during parsing.

24

4.1

Flaws Detected

Bug 1: In the function nsvg__parseFloat, a NULL string was passed to sscanf,
resulting in a segmentation fault. This occurred due to insufficient validation of input
before parsing.

Bug 2: Also in nsvg__parseFloat, malformed strings caused sscanf to misbchave.
This was due to improper handling of unexpected input formats, leading to undefined
bchavior.

Bug 3: In the function nsvg__parseAttr, a NULL valuec was passed as the value
parameter in comparisons or calls to functions like stremp. This caused segmentation
faults due to invalid memory access.

Bug 4: In nsvg__parseSVG, attempting to parse NULL or malformed attribute values
(c.g., empty strings) without validation led to segmentation faults during operations
such as sscanf and strstr.

Bug 5: In nsvg__parseFloat, the lack of validation for the format of input strings
allowed invalid characters to pass through, leading to misbchavior and potential crashes
during parsing.

25

Lack of Input Validation & Writing Style

Talk about ‘lack of validation before parsing’ is potentially
misleading

Validation is an integral part of parsing.
If you first validate data & then only parse valid data
you end up with two parsers

Hence the ‘Parse, don’t validate’ slogan

General writing tip: don’t try to say the same thing in different
ways

— This only confuses the reader

— Forget what they told you in high school about varying words

— Keep prose boring & repetitive, consistently using the same
terminology

26

Uniqueness

Are ‘unique’ bugs (as claimed by afl++ or Honggfuzz)
really unique?

Often not!

27

Hangs / time-outs

Are hangs/time-outs really hangs?
Often not!

28

Beware of different goals of instrumentation

Instrumentation is used for two very different purposes in fuzzing:

1) to provide feedback to guide the mutation process

eg afl’s or Honggfuzz’s standard instrumentation to observe
branch coverage

2) to detect bugs

eg the instrumentation added by sanitisers
such as ASan, MSan, UBSan

29

Watch your prose

As the reader progresses through the following sections, they will gain valuable insights into the unique
strengths and limitations of each fuzzing tool, in addition to gaining a comprehensive understanding of the
security posture of the@jiliftool. The findings in this report have the potential to contribute significantly to

the overarching discourse on software security, enabling efforts aimed at increasing the resilience of critical
software components.

By leveraging the formidable capabilities of fuzzing techniques and tools, this report represents a critical

step in strengthening open-source applications like@llllPand @EDand in strengthening the security
and reliability of file processing within today’s dynamic digital landscape.

30

Some end of year reflection

not exam material

31

WHY SOFTWARE REMAINS INSECURE

Thﬂ societal gains SOFTWARE’S WIN/LOSS LEDGER
provided by all software

UNFATHOMABLE

BasiCaLLY ZERO

BASICALLY NEVER
ZERD

BILLIONS

BEMEFIT TO HUMAMITY

PEOPLE KILLED BY BAD SOFTWARE
TIMES THE INTERMET CRASHED
CHAMCE OF LIVING WITHOUT IT
MUMBER OF PEOPLE HELPED

ExcEL
THE INTERMET
MOBILE PHOMES
GPS
COMLIME SHOPPIMNG
CLOUD COMPUTING
WIDEQ COMFEREMCING
GOING TO THE MOOHM
MAINFRAMES
ARTIFICIAL INTELLIGEMCE
Lirwx
WORD PROCESSING
Winpows
ANDROID
105
EXPLORING THE SOLAR SYSTEM
METFLIX
AWS

The societal problems
caused by bad software

AMMOYANCE
OCCasIONAL DDOS
S5LIGHT PROFIT IMPACT

Dassel Meirgir, 013

Daniel Miessler, https://danielmiessler.com/p/the-reason-software-remains-insecure/

32

Phishing overtook
exploit-based
malware in 2016

80000

60000

40000

20000

Exploit malware and phishing sites detected each week

‘ Malware

@ Phishing

2010 2012 2014 2016 2018

Source: Safe Browsing (Google Transparency Report)

33

	Slide 1: Fuzzing results
	Slide 2: Fuzzing – case studies
	Slide 3: Fuzzing – tools used
	Slide 4: Fuzzing – bugs found?
	Slide 5:
	Slide 6: Typical performance numbers (group 3)
	Slide 7: Typical performance numbers (group 4)
	Slide 8: Is ASan/MSan overhead worth it?
	Slide 9: Typical ASan & MSan overhead (group 10)
	Slide 10: Valgrind (group 3)
	Slide 11: Surprising dumb fuzzer successes (group 3)
	Slide 12: Unexplained mysteries? [group 19]
	Slide 13: ASan overhead [group 20]
	Slide 14: ASan overhead [group 19]
	Slide 15: Spot the security flaw [CVE-2024-320, group 8]
	Slide 16: Security fix
	Slide 17: Seed selection [group 4]
	Slide 18: Seed selection: using ChatGTP? [group 19]
	Slide 19: Checksum issues? [group 19. And other PNG groups?]
	Slide 20: Coverage (group 16)
	Slide 21: Crash/error = security issue or not? [group 23]
	Slide 22: Crash on assertion error = security issue? [group 8]
	Slide 23:
	Slide 24
	Slide 25
	Slide 26: Lack of Input Validation & Writing Style
	Slide 27: Uniqueness
	Slide 28: Hangs / time-outs
	Slide 29: Beware of different goals of instrumentation
	Slide 30: Watch your prose
	Slide 31: Some end of year reflection - not exam material
	Slide 32
	Slide 33

