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Fuzzing – case studies
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Group Case study input format

1 LunaSVG SVG

3 libspng PNG

4 svg2gcode SVG

5 impr BMP

8 simd PNG

10 svg2ass SVG

12 bmp2jpeg BMP

15 stenography 
(encoding and decoding)

PNG and ZIP 

16 OpenTTD OpenTTD save file

19 PNGcrush PNG

20 PDFALTO PDF

21 PDF-Parser-C PDF

23 ROC Toolkit ROC audiostream



Fuzzing – tools used
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Group Case study fuzzers sanitisers

1 LunaSVG afl++, Honggfuzz, zzuf ASan

3 libspng afl++, zzuf, Radamsa ASan, MSan, valgrind

4 svg2gcode
afl++, Honggfuzz, zzuf, Radamsa,  

LibFuzzer
ASan, UBSan

5 impr afl++, Honggfuzz, zzuf ASan

8 simd afl++, Honggfuzz ASan, MSan

10 svg2ass afl++, Honggfuzz, zzuf, Radamsa, ASan, MSan

12 bmp2jpeg afl++, HonggFuzz, zzuf Asan

15 stenography afl++, HonggFuzz, zzuf, Radamsa Asan, valgrind

16 OpenTTD afl++, Honggfuzz, zzuf ASan, MSan

19 PNGcrush afl++, HongFuzz,  zzuf ASan

20 PDFALTO afl, Zzuf, Hongfuzz, Radamsa ASan

21 PDF-Parser-C afl, HonggFuzz, zzuf ASan, MSan

23 ROC Toolkit
afl++, Libfuzzer, Radamsa,

(Hongfuzz, Angora, zzuf)
ASan, UBSan



Fuzzing –  bugs found? 
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Group Case study fuzzers bugs found?

1 LunaSVG afl++, Honggfuzz, zzuf yes (in dependency)

3 libspng afl++, zzuf, Radamsa yes

4 svg2gcode
afl++, Honggfuzz, zzuf, Radamsa,  

LibFuzzer
yes

5 impr afl++, Honggfuzz, zzuf yes

8 simd afl++, Honggfuzz yes

10 svg2ass afl++, Honggfuzz, zzuf, Radamsa, yes  

12 bmp2jpeg afl++, HonggFuzz, zzuf yes  

15 stenography afl++, HonggFuzz, zzuf, Radamsa yes  

16 OpenTTD afl++, Honggfuzz, zzuf no

19 PNGcrush afl++, HongFuzz,  zzuf yes

20 PDFALTO afl, Zzuf, Hongfuzz, Radamsa yes

21 PDF-Parser-C afl, HonggFuzz, zzuf yes

23 ROC Toolkit
afl++, (Hongfuzz), Libfuzzer, 

(Angora), Radamsa, (zzuf)
yes



Did anyone report bugs? 

 

Or even commit bug fixes?
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Typical performance numbers (group 3)

afl++ is typically  faster than the other tools

(though group 12 reported Honggfuzz was faster than afl++)
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Typical performance numbers (group 4)

Rule of thumb: if dumb fuzzers like zzuf and Radamsa find bugs then 

the code is pretty bad.
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Is ASan/MSan overhead worth it?  
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Typical ASan & MSan overhead   (group 10)
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Valgrind (group 3)

Valgrind is probably too slow (compared to ASan & MSan) to use 

while fuzzing

It may still be useful for post-hoc analysis of bugs
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Surprising dumb fuzzer successes (group 3)

Sometimes -  surprisingly - zzuf and Radamsa beat afl++  

Unsurprisingly, they then find many instances of the same bug

Still, I think group 12 is right to say that
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Unexplained mysteries? [group 19]
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ASan overhead   [group 20]

Surprising lack of ASan overhead
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ASan overhead   [group 19]

Even more surprising: ASan speeding things up
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Spot the security flaw   [CVE-2024-320, group 8]
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Security fix   
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Seed selection [group 4]

It is to be expected that a file of 500 Kb is too big for fuzzing

It is nice to see that different seeds still reveal the same bugs
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Seed selection: using ChatGTP? [group 19] 

Interesting idea, but not sure if it will be any help
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Checksum issues?   [group 19. And other PNG groups?] 
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Coverage (group 16)
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Crash/error = security issue or not? [group 23]

• dsa

21



Crash on assertion error = security issue? [group 8]
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Lack of Input Validation & Writing Style

• Talk about ‘lack of validation before parsing’ is potentially 

misleading

Validation is an integral part of  parsing.

If you first validate data & then only parse valid data                      

you end up with two parsers

Hence the ‘Parse, don’t validate’  slogan 

• General writing tip: don’t try to say the same thing in different 

ways

– This only confuses the reader

– Forget what they told you in high school about varying words

– Keep prose boring & repetitive, consistently using the same 

terminology
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Uniqueness

Are ‘unique’  bugs  (as claimed by afl++ or Honggfuzz) 

really   unique?

Often not!
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Hangs / time-outs

Are hangs/time-outs really hangs?

Often not!
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Beware of different goals of instrumentation

Instrumentation is used for two very different purposes in fuzzing:

1) to provide feedback to guide the mutation process

eg afl’s or Honggfuzz’s standard instrumentation to observe 

branch coverage

2) to detect bugs

eg the instrumentation added by sanitisers  

such as ASan, MSan, UBSan
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Watch your prose
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Some end of year reflection

-

not exam material
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Daniel Miessler, https://danielmiessler.com/p/the-reason-software-remains-insecure/
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• adsd
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[Slide by Christiaan Brand, BlackHat 2019; data from Google Transparency Report]
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