
Fuzzing results

Cristian Daniele

Patrick Lodeweegs

Erik Poll

Digital Security group

Radboud University Nijmegen

1

Fuzzing – case studies

2

Group Case study input format

1 LunaSVG SVG

3 libspng PNG

4 svg2gcode SVG

5 impr BMP

8 simd PNG

10 svg2ass SVG

12 bmp2jpeg BMP

15 stenography
(encoding and decoding)

PNG and ZIP

16 OpenTTD OpenTTD save file

19 PNGcrush PNG

20 PDFALTO PDF

21 PDF-Parser-C PDF

23 ROC Toolkit ROC audiostream

Fuzzing – tools used

3

Group Case study fuzzers sanitisers

1 LunaSVG afl++, Honggfuzz, zzuf ASan

3 libspng afl++, zzuf, Radamsa ASan, MSan, valgrind

4 svg2gcode
afl++, Honggfuzz, zzuf, Radamsa,

LibFuzzer
ASan, UBSan

5 impr afl++, Honggfuzz, zzuf ASan

8 simd afl++, Honggfuzz ASan, MSan

10 svg2ass afl++, Honggfuzz, zzuf, Radamsa, ASan, MSan

12 bmp2jpeg afl++, HonggFuzz, zzuf Asan

15 stenography afl++, HonggFuzz, zzuf, Radamsa Asan, valgrind

16 OpenTTD afl++, Honggfuzz, zzuf ASan, MSan

19 PNGcrush afl++, HongFuzz, zzuf ASan

20 PDFALTO afl, Zzuf, Hongfuzz, Radamsa ASan

21 PDF-Parser-C afl, HonggFuzz, zzuf ASan, MSan

23 ROC Toolkit
afl++, Libfuzzer, Radamsa,

(Hongfuzz, Angora, zzuf)
ASan, UBSan

Fuzzing – bugs found?

4

Group Case study fuzzers bugs found?

1 LunaSVG afl++, Honggfuzz, zzuf yes (in dependency)

3 libspng afl++, zzuf, Radamsa yes

4 svg2gcode
afl++, Honggfuzz, zzuf, Radamsa,

LibFuzzer
yes

5 impr afl++, Honggfuzz, zzuf yes

8 simd afl++, Honggfuzz yes

10 svg2ass afl++, Honggfuzz, zzuf, Radamsa, yes

12 bmp2jpeg afl++, HonggFuzz, zzuf yes

15 stenography afl++, HonggFuzz, zzuf, Radamsa yes

16 OpenTTD afl++, Honggfuzz, zzuf no

19 PNGcrush afl++, HongFuzz, zzuf yes

20 PDFALTO afl, Zzuf, Hongfuzz, Radamsa yes

21 PDF-Parser-C afl, HonggFuzz, zzuf yes

23 ROC Toolkit
afl++, (Hongfuzz), Libfuzzer,

(Angora), Radamsa, (zzuf)
yes

Did anyone report bugs?

Or even commit bug fixes?

5

Typical performance numbers (group 3)

afl++ is typically faster than the other tools

(though group 12 reported Honggfuzz was faster than afl++)

6

Typical performance numbers (group 4)

Rule of thumb: if dumb fuzzers like zzuf and Radamsa find bugs then

the code is pretty bad.

7

Is ASan/MSan overhead worth it?

8

Typical ASan & MSan overhead (group 10)

9

Valgrind (group 3)

Valgrind is probably too slow (compared to ASan & MSan) to use

while fuzzing

It may still be useful for post-hoc analysis of bugs

10

Surprising dumb fuzzer successes (group 3)

Sometimes - surprisingly - zzuf and Radamsa beat afl++

Unsurprisingly, they then find many instances of the same bug

Still, I think group 12 is right to say that

11

Unexplained mysteries? [group 19]

12

ASan overhead [group 20]

Surprising lack of ASan overhead

13

ASan overhead [group 19]

Even more surprising: ASan speeding things up

14

Spot the security flaw [CVE-2024-320, group 8]

15

Security fix

16

Seed selection [group 4]

It is to be expected that a file of 500 Kb is too big for fuzzing

It is nice to see that different seeds still reveal the same bugs

17

Seed selection: using ChatGTP? [group 19]

Interesting idea, but not sure if it will be any help

18

Checksum issues? [group 19. And other PNG groups?]

19

Coverage (group 16)

20

Crash/error = security issue or not? [group 23]

• dsa

21

Crash on assertion error = security issue? [group 8]

22

23

24

25

Lack of Input Validation & Writing Style

• Talk about ‘lack of validation before parsing’ is potentially

misleading

Validation is an integral part of parsing.

If you first validate data & then only parse valid data

you end up with two parsers

Hence the ‘Parse, don’t validate’ slogan

• General writing tip: don’t try to say the same thing in different

ways

– This only confuses the reader

– Forget what they told you in high school about varying words

– Keep prose boring & repetitive, consistently using the same

terminology

26

Uniqueness

Are ‘unique’ bugs (as claimed by afl++ or Honggfuzz)

really unique?

Often not!

27

Hangs / time-outs

Are hangs/time-outs really hangs?

Often not!

28

Beware of different goals of instrumentation

Instrumentation is used for two very different purposes in fuzzing:

1) to provide feedback to guide the mutation process

eg afl’s or Honggfuzz’s standard instrumentation to observe

branch coverage

2) to detect bugs

eg the instrumentation added by sanitisers

such as ASan, MSan, UBSan

29

Watch your prose

30

Some end of year reflection

-

not exam material

31

Daniel Miessler, https://danielmiessler.com/p/the-reason-software-remains-insecure/

32

• adsd

33

[Slide by Christiaan Brand, BlackHat 2019; data from Google Transparency Report]

	Slide 1: Fuzzing results
	Slide 2: Fuzzing – case studies
	Slide 3: Fuzzing – tools used
	Slide 4: Fuzzing – bugs found?
	Slide 5:
	Slide 6: Typical performance numbers (group 3)
	Slide 7: Typical performance numbers (group 4)
	Slide 8: Is ASan/MSan overhead worth it?
	Slide 9: Typical ASan & MSan overhead (group 10)
	Slide 10: Valgrind (group 3)
	Slide 11: Surprising dumb fuzzer successes (group 3)
	Slide 12: Unexplained mysteries? [group 19]
	Slide 13: ASan overhead [group 20]
	Slide 14: ASan overhead [group 19]
	Slide 15: Spot the security flaw [CVE-2024-320, group 8]
	Slide 16: Security fix
	Slide 17: Seed selection [group 4]
	Slide 18: Seed selection: using ChatGTP? [group 19]
	Slide 19: Checksum issues? [group 19. And other PNG groups?]
	Slide 20: Coverage (group 16)
	Slide 21: Crash/error = security issue or not? [group 23]
	Slide 22: Crash on assertion error = security issue? [group 8]
	Slide 23:
	Slide 24
	Slide 25
	Slide 26: Lack of Input Validation & Writing Style
	Slide 27: Uniqueness
	Slide 28: Hangs / time-outs
	Slide 29: Beware of different goals of instrumentation
	Slide 30: Watch your prose
	Slide 31: Some end of year reflection - not exam material
	Slide 32
	Slide 33

