
Software Security

Memory corruption

public enemy number 1

Erik Poll
Digital Security

Radboud University Nijmegen

1. Out-of-bounds Write

 (CWE-787)

2. Cross Site Scripting (XSS)

(CWE-79)

4. Use After Free

(CWE-416)

6. Improper Input Validation

 (CWE-20)

7. Out-of-bounds Read

 (CWE-125)

3. SQL injection

 (CWE-89)

8. Path Traversal

 (CWE-22)

9. Client-Side Request Forgery (CSRF)

(CWE-352)

5. OS Command Injection

 (CWE-78)

10. Unrestricted Upload of Dangerous

File Type (CWE-434)

11. Missing Authorisation

 (CWE-862)

13. Improper Authentication

 (CWE-287)

14. Integer Overflow or Wraparound

(CWE-190)

15. Deserialisation of Untrusted Data

 (CWE-502)

12. NULL Pointer Deference

 (CWE-476)

16. Command Injection

 (CWE-77)

17. Improper Restriction of Operations

on Memory Buffer Bounds (CWE-119)

18. Hardcoded Credentials

(CWE-798)

19. Server-Side Request Forgery

(CSRF) (CWE-918)

21. Race Condiiton

(CWE-362)

22. Improper Privilige Management

 (CWE-269)

23. Code Injection

(CWE-94)

20. Missing Authentication

 (CWE-306)

24. Incorrect Authorisation

 (CWE-863)

25. Incorrect Default Permissions

(CWE-276)

CWE Top 25 https://cwe.mitre.org/top25

Memory corruption vulns vs the rest

at Microsoft 2006-2018

3

[Source: https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code

 and “Trends, challenge, and shifts in software vulnerability mitigation”, presentation by Matt Miller

at BlueHat IL 2019]

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code

Memory corruption bugs in Chromium project – since 2015

70% of high severity & critical security bugs are memory unsafety problems

5 of the 130 critical security flaws in Chrome were not clearly due to memory corruption

[Source: https://www.chromium.org/Home/chromium-security/memory-safety]

4

https://www.chromium.org/Home/chromium-security/memory-safety

Security in the development lifecycle

(Microsoft SDL version 5.2)

5

aka SAST
(Static Application
Security Testing)

aka DAST
(Dynamic Application

Security Testing)

Finding & fixing memory corruption – next weeks

week 3: exercise
Static analysis
with PREfast

week4: group project
fuzzing afl

memory sanitizers ASan, MSan

6

More structural prevention - later

7

LangSec for safer
parser code

Safer programming
languages

Overview (this & next weeks)

1. How do memory corruption flaws work?

2. What can be the impact?

3. How can we spot such problems in C(++) code?

Tool-support for this

• SAST: PREfast individual / pair project

• DAST: Fuzzing group project

4. What can ‘the platform’ do about it?

ie. the compiler, system libraries, hardware, OS, ..

5. What can the programmer do about it?

8

Reading material

• SoK article: ‘Eternal War in Memory’ S&P 2013

– Excl. Section VII.

– This article is quite dense. You are not expected to be able to

reproduce or remember all the discussion here. It’s good

enough if you can follow the article, with a steady supply of

coffee while googling if the terminology is not clear.

• Chapter 3.1 & 3.2 in lecture notes on memory-safety

We’ll revisit ‘safe’ programming languages – not just memory-safety but

also other froms of safety – and rest of Chapter 3 in later lectures

9

Essence of the problem

Suppose in a C program you have an array of length 4

 char buffer[4];

What happens if the statement below is executed?

 buffer[4] = 'a';

We don’t know!

This is defined to be

ANYTHING can happen

10

undefined behaviour: anything can happen

6

7

undefined behaviour: anything can happen

13

undefined behaviour: nothing may happen

14

Anything attackers wants?

 char buffer[4];

 buffer[4] = 'a';

If the attacker controls the value 'a'

then anything that the attacker wants can often happen…

• If we are lucky : program crashes with SEGMENTATION FAULT

• If we are unlucky : program does not crash, but silently

allows data corruption or remote code execution (RCE)

and we won’t know this until it’s too late

15

Nothing may happen

 char buffer[4];

 buffer[4] = 'a';

A compiler could remove the assignment above,

ie. do nothing

Compilers actually do this (as part of optimisation) and this can

cause security problems; examples later & in the lecture notes.

16

Solution to this problem

• Check array bounds at runtime

– Algol 60 proposed this back in 1960!

• Unfortunately, C and C++ have not adopted this solution.

• Why?

• For efficiency
Regrettably, people often choose performance over

security

• As a result, buffer overflows have been the no 1 security

problem in software ever since

• Check out CVEs mentioning buffer (or buffer%20overflow)

 https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer

• Fortunately: Perl, Python, Java, C#, PHP, Javascript, and

Visual Basic and Rust do check array bounds

17

Tony Hoare on design principles of ALGOL 60

In his Turing Award lecture in 1980

 “The first principle was security : ... every subscript was checked

at run time against both the upper and the lower declared

bounds of the array. Many years later we asked our customers

whether they wished an option to switch off these checks in the

interests of efficiency. Unanimously, they urged us not to - they

knew how frequently subscript errors occur on production runs

where failure to detect them could be disastrous.

 I note with fear and horror that even in 1980, language designers

and users have not learned this lesson. In any respectable

branch of engineering, failure to observe such elementary

precautions would have long been against the law.”

[C.A.R. Hoare, The Emperor’s Old Clothes, Communications of the ACM, 1980]

18

Hope on the horizon?

especially thanks to Rust

https://www.cisa.gov/case-memory-safe-roadmaps

19

More memory corruption problems

Errors with pointers and with dynamic memory (aka the heap)

• Have you ever written a C(++) program that uses pointers?

• Have you ever had such a program crashing?

• Have you even written a C(++) program that uses dynamic
memory, ie. malloc() and free()?

• Have you ever had such a program crashing?

In C/C++, the programmer is responsible for memory

management and this is very error-prone

– Technical term: C and C++ do not offer memory-safety

 (see lecture notes, §3.1-3.2)

20

Spot all (potential) defects

1000 …

 1001 void f(){

 1002 char* buf, buf1, buf24;

 1003 buf = malloc(100);

 1004 buf[0] = ’a’;

 ...

 98991 free(buf24);

 98992 buf[0] = ’b’;

 ...

999991 free(buf);

999992 buf[0] = ’c’;

999993 buf1 = malloc(100);

999994 buf[0] = ’d’

999995 }

potential use-after-free

if buf & buf24 are aliased

null dereference

if malloc failed

use-after-free; buf[0] points

to de-allocated memory

use-after-free, but now buf[0]

may point to memory that has

been re-allocated for buf1

memory leak; pointer buf1

to this memory is lost &

memory is never freed

21

Causes of memory corruption problems

• Access outside array bounds aka buffer overflow

• overread or overwrite

overreads are not a corruption issue, but confidentiality issue

• Pointer trouble:

• buggy pointer arithmetic,

• dereferencing null pointer,

• using a dangling pointer aka stale pointer

• caused by e.g. use-after-free or double-free

• Memory management problems:

• Forgetting to check for failures in allocation

• Forgetting to de-allocate, aka memory leaks

• not a corruption issue, but an availability issue

• Other ways to break memory abstractions: missing null

terminators, too many null terminators, type casts, type

confusion, …

22

Exploiting this

23

Process memory layout

Arguments/ Environment

Stack

Unused Memory

Heap (dynamic data)

Static Data

Program Code .text
Low

addresses

High

addresses
Stack grows

down,

by procedure

calls

Heap grows

up,

eg. by malloc

and new.data

24

Stack layout

The stack consists of Activation Records aka stack frames:

AR main()

AR f()

Stack grows

downwards

void f(int x) {

 char[8] buf;

 gets(buf);

}

void main() {

 f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer buf goes

upwards

25

Stack overflow attack - case 1

What if gets() reads more than 8 bytes ?

AR main()

AR f()

void f(int x) {

 char[8] buf;

 gets(buf);

}

void main() {

 f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

26

Stack overflow attack - case 1

What if gets() reads more than 8 bytes ?

Attacker can jump to arbitrary point in the code!

AR main()

AR f()

void f(int x) {

 char[8] buf;

 gets(buf);

}

void main() {

 f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

code reuse
attack

27

Stack overflow attack - case 2

What if gets() reads more than 8 bytes ?

Attackers can also jump to their own code (aka shell code)

AR main()

AR f()

void f(int x) {

 char[8] buf;

 gets(buf);

}

void main() {

 f(…); …
}

void format_hard_disk(){…}

x

return address

/bin/sh

exec

code injection
attack

28

Stack overflow attack - case 2

What if gets() reads more than 8 bytes ?

Attacker can jump to his own code (aka shell code)

AR main()

AR f()

void f(int x) {

 char[8] buf;

 gets(buf);

}

void main() {

 f(…); …
}

void format_hard_disk(){…}

x

return address

/bin/sh

exec

never use gets!

gets has been removed from

the C standard in 2011

29

Code injection vs code reuse

Two types of attacks in these examples

(2) is a code injection attack

attackers inject their own shell code in some buffer

and corrupt return addresss to point to this code

In the example, exec('/bin/sh')

This is the classic buffer overflow attack

[Smashing the stack for fun and profit, Aleph One, 1996]

(1) is a code reuse attack

attackers corrupt return address to point to existing code

In the example, format_hard_disk

Lots of details to get right!

• knowing precise location of return address and other data on

stack, knowing address of code to jump to,

30

What to attack? Corrupting the stack

Suppose attacker can overflow username

This can corrupt the return address, but also other data on the stack:

 is_super_user, diskquota, filename, x, b, error_handler

• But not j, unless the compiler chooses to allocate variables in a

different order, which the compiler is free to do

• Corruption function pointers such as error_handler is particularly

interesting! Why?

void f(int x,

 void(*error_handler)(int),

 bool b) {

 int diskquota = 200;

 bool is_super_user = false;

char* filename = "/tmp/scratchpad";

 char[8] username;

 int j = 12;

 ...

}

function pointer

31

What to attack? Corrupting data on the heap

struct BankAccount {

 int number;

 char username[20];

 int balance;

}

Suppose attacker can overflow username

This can corrupt other fields in the struct

• Which fields depends on the order of the fields in memory.

 The compiler is free to choose this.

32

What to attack? Corrupting vtables on the heap

C++ code uses late binding to resolve (so-called virtual) method calls

 Rectangle r;

 Circle c;

 Shape s;

 _surface_area = r.area() + c.area() + s.area();

Which code to execute for s.area() is determined at runtime.

To do this, a table of function pointers, the vtable,

is maintained that tells which code to execute for each method

This provides many function pointers for attackers to mess with!

33

Recurring theme in attacks: breaking abstractions

34

Spotting the problem

• A char in C is always exactly one byte

• A string is a sequence of chars terminated by a NULL byte

• String variables are pointers of type char*

char* str = "hello"; // a string str

Here strlen(str) will be 5

str

h e l l o \0

Reminder: C chars & strings

36

Example: gets

char buf[20];

 gets(buf); // read user input until

 // first EoL or EoF character

• Never use gets

• gets has been removed from the C library

so this code will no longer compile

• Use fgets(buf, size, file) instead

37

Example: strcpy

char dest[20];

 strcpy(dest, src); // copies string src to dest

• strcpy assumes that 1 dest is long enough

 and src is null-terminated

• Use strncpy(dest, src, size) instead

Beware of difference between sizeof and strlen

sizeof(dest) = 20 // size of an array

strlen(dest) = number of chars up to first null byte

// length of a string

38

Spot the defect!

char buf[20];

char prefix[] = "http://";

char* path;

...

strcpy(buf, prefix);

 // copies the string prefix to buf

strncat(buf, path, sizeof(buf));

 // concatenates path to the string buf

39

Spot the defect! (1)

char buf[20];

char prefix[] = "http://";

char* path;

...

strcpy(buf, prefix);

 // copies the string prefix to buf

strncat(buf, path, sizeof(buf));

 // concatenates path to the string buf

strncat’s 3rd parameter is number

of chars to copy, not the buffer size

So this should be sizeof(buf)-7

40

Better libraries

Keeping track of the space left in buffers when using strncpy and
strncpy is error-prone. Better alternatives:

• strlcpy(dst,src,size) and strlcat(dst,src,size)
Here size is the size of destination array dst, not the maximum
length copied. These are consistently used in OpenBSD.

• Functions in Microsoft’s Strsafe.h also always takes destination

size as argument. Moreover, they guarantee null-termination.

Other alternatives:

• glib.h provides Gstring type for dynamically growing null-

terminated strings in C

• C++ string objects are less error-prone than C strings

– but data() and c-str()return a C string, ie. a char*, and

result of data()is not always null-terminated on all platforms.

41

Spot the defect! (2)

char src[9];

 char dest[9];

 char* base_url = "www.ru.nl";

 strncpy(src, base_url, 9);

 // copies base_url to src

 strcpy(dest, src);

 // copies src to dest

42

char src[9];

 char dest[9];

 char* base_url = "www.ru.nl";

 strncpy(src, base_url, 9);

 // copies base_url to src

 strcpy(dest, src);

 // copies src to dest

Spot the defect! (2)

base_url is 10 chars long, incl.

its null terminator, so src will not

be null-terminated

43

Spot the defect! (2)

char src[9];

 char dest[9];

 char* base_url = ”www.ru.nl”;

 strncpy(src, base_url, 9);

 // copies base_url to src

 strcpy(dest, src);

 // copies src to dest

 so strcpy will overrun the buffer dest,

because src is not null-terminated

base_url is 10 chars long, incl.

its null terminator, so src will not

be null-terminated

44

Example: strcpy and strncpy

Don’t replace

 strcpy(dest, src)

 with

 strncpy(dest, src, sizeof(dest))

 but with

 strncpy(dest, src, sizeof(dest)-1)

 dst[sizeof(dest)-1] = '\0';

 if you want dest to be null-terminated!

NB: a strongly typed programming language would

guarantee that strings are always null-terminated,

without the programmer having to worry about this...

45

Spot the defect! (3)

char *buf;

 int len;

...

 buf = malloc(MAX(len,1024)); // allocate buffer

 read(fd,buf,len); // read len bytes into buf

 What happens if len is negative?

The length parameter of read is unsigned!

So negative len is interpreted as a big positive one!

AAAAAAAAARGH!

(At the exam, you’re not expected to remember
 that read treats its 3rd argument as an unsigned int)

46

Spot the defect! (3)

char *buf;

 int len;

...

 if (len < 0)

 {error ("negative length"); return; }

 buf = malloc(MAX(len,1024));

 read(fd,buf,len);

Note that buf is not guaranteed to be null-terminated;

we ignore this for now.

47

Spot the defect! (3)

char *buf;

 int len;

...

 if (len < 0)

 {error ("negative length"); return; }

 buf = malloc(MAX(len,1024));

 read(fd,buf,len);

What if the malloc() fails,

because we ran out of memory ?

48

Spot the defect! (3)

char *buf;

 int len;

...

 if (len < 0)

 {error ("negative length"); return; }

 buf = malloc(MAX(len,1024));

 if (buf==NULL) { exit(-1);}

 // or something a bit more graceful

 read(fd,buf,len);

49

Better still

char *buf;

 int len;

...

 if (len < 0)

 {error ("negative length"); return; }

 buf = calloc(MAX(len,1024));

 //to initialise allocate memory to 0

 if (buf==NULL) { exit(-1);}

 // or something a bit more graceful

 read(fd,buf,len);

50

Spot the defect!

#define MAX_BUF 256

void BadCode (char* input)

{ short len;

 char buf[MAX_BUF];

 len = strlen(input);

 if (len < MAX_BUF) strcpy(buf,input);

}

51

Spot the defect!

#define MAX_BUF 256

void BadCode (char* input)

{ short len;

 char buf[MAX_BUF];

 len = strlen(input);

 if (len < MAX_BUF) strcpy(buf,input);

}

 The integer overflow is the root problem,

the (heap) buffer overflow it causes makes it exploitable

See https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=integer+overflow

What if in is longer than 32K ?

len may be a negative number,

due to integer overflow

hence: potential

buffer overflow

52

Spot the defect!

#define MAX_BUF 256

void BadCode (char* input)

{ short len;

 ...

 len = strlen(input);

 ...

}

Just this strlen call is already a

potential problem: if input is null or

if it is not null-terminated then
strlen(input) results in

undefined behaviour

53

Spot the defect!

bool CopyStructs(InputFile* f, long count)

{ structs = new Structs[count];

 for (long i = 0; i < count; i++)

 { if !(ReadFromFile(f,&structs[i])))

 break;

 }

 }

And this integer overflow can lead to a (heap) buffer overflow

Since 2005 Visual Studio C++ compiler adds check to prevent this

effectively does a
malloc(count*sizeof(type))

which may cause integer overflow

54

NB absence of language-level security

In a safer programming language than C/C++,

the programmer would not have to worry about

• writing past array bounds

(because you'd get an IndexOutOfBoundsException instead)

• strings not having a null terminator

• implicit conversions from signed to unsigned integers
(because the type system/compiler would forbid this or warn)

• malloc possibly returning null
(because you'd get an OutOfMemoryException instead)

• malloc not initialising memory
(because language could always ensure default initialisation)

• integer overflow
(because you'd get an IntegerOverflowException instead)

• ...

55

Spot the defect!

1. void* f(int start) {

2. if (start+100 < start) return SOME_ERROR_CODE;

3. // checks for overflow

4. for (int i=start; i < start+100; i++) {

5. . . . // i will not overflow

6. } }

Integer overflow is undefined behaviour! This means

• You cannot assume that overflow produces a negative number;
so line 2 is not a good check for integer overflow.

• Worse still, if integer overflow occurs, behaviour is undefined:

• So compiled code can do anything if start+100 overflows

• So compiled code can do nothing if start+100 overflows

• This means the compiler can remove line 2

Modern C compilers are clever enough to know that x+100 < x

is always false, and optimise code accordingly

56

Spot the defect! (code from Linux kernel)

1. unsigned int tun_chr_poll(struct file *file,

 2. poll_table *wait)

 3. { ...

 4. struct sock *sk = tun->sk; // take sk field of tun

 5. if (!tun) return POLLERR; // return if tun is NULL

 6. ...

 7. }

57

Spot the defect! (code from Linux kernel)

1. unsigned int tun_chr_poll(struct file *file,

 2. poll_table *wait)

 3. { ...

 4. struct sock *sk = tun->sk; // take sk field of tun

 5. if (!tun) return POLLERR; // return if tun is NULL

 6. ...

 7. }

If tun is a null pointer, then tun->sk is undefined
What this function does when tun is null is undefined:

ANYTHING may happen then.

So compiler can remove line 5: the behaviour when tun is NULL is

undefined anyway, so this check is 'redundant'.

Standard compilers (gcc, clang) do this 'optimalisation' !

This is code from the Linux kernel where removing line 5 led to a

security vulnerability [CVE-2009-1897]

58

Spot the defect! (code from Windows kernel)

// TCHAR is 1 byte ASCII or multiple byte UNICODE

#ifdef UNICODE

define TCHAR wchar_t

define _tprintf _wprintf

#else

define TCHAR char

define _tprintf _printf

#endif

TCHAR buf[MAX_SIZE];

_tprintf(buf, sizeof(buf), input);

Switch from ASCI to UNICODE caused lots of buffer overflows

[slide from presentation by Jon Pincus]

ASCI character, 1 byte

wide UNICODE character, > 1 byte

print-function for wide character strings

print-function for ASCI character strings

sizeof(buf) is the size in bytes,

but this parameter should be the

number of characters

59

Spot the defect!

#include <stdio.h>

int main(int argc, char* argv[])

{ if (argc > 1)

 printf(argv[1]);

 return 0;

}

60

Spot the defect!

#include <stdio.h>

int main(int argc, char* argv[])

{ if (argc > 1)

 printf(argv[1]);

 return 0;

}

 This program is vulnerable to format string attacks, where
calling the program with strings containing special
characters can result in a buffer overflow attack.

61

Format string attacks

Type of memory corruption discovered in 2000

• Strings can contain special characters, eg %s in

 printf("Cannot find file %s", filename);

 Such strings are called format strings

• What happens if we execute the code below?

 printf("Cannot find file %s");

• What can happen if we execute

 printf(string)

 where string is user-supplied ?

 Esp. if it contains special characters, eg %s, %x, %n, %hn?

62

Format string attacks

If attacker can control malicious input s to printf(s)
then this can

• read the stack

%x reads and prints bytes from stack

so input %x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x

%x%
x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x...

dumps the stack, including passwords, keys,… stored on
the stack

• corrupt the stack

 %n writes the number of characters printed to the stack

so input 12345678%n writes the value 8 to the stack

• read arbitrary memory

a carefully crafted input string of the form

\xEF\xCD\xCD\xAB %x%x...%x%s

print the string at memory address ABCDCDEF

63

1. Always replace printf(str)

 with printf("%s", str)

2. Compiler or static analysis (SAST) tool could warn if the

number of arguments does not match the format string

As e.g. in printf ("x is %i and y is %i", x);

• gcc has (far too many!) command line options for this:

-Wformat –Wformat-no-literal –Wformat-security...

• If the format string is not a compile-time constant, we cannot
decide this at compile time

Would you then want your compiler or SAST tool to a give false
positive or false negative?

Check https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=format+string

to see how common format strings still are

Preventing format string attacks is EASY

-Wformat-overflow

64

Recap: memory corruption

• #1 weakness in C / C++

– because these language are not memory-safe and

programmer is responsible for memory management

• Tricky to spot

• Typical cause: programming with arrays, pointers, strings

& and dynamic (ie heap-allocated) memory

• Related attacks

• Format string attack: another way of corrupting stack

• Integer overflows: useful a stepping stone to getting a

buffer to overflows, or dangerous in its own right

65

Platform-level defences

66

Platform-level defences

• Defenses the compiler, hardware, OS,… can take,

without the programmer having to know

• Some defenses need OS & hardware support

• Some defenses cause overhead

– if this overhead is unacceptable in production code,

we can still use it in testing phase

• Some defenses may break binary compatibility

– if the compiler adds extra book-keeping & checks,

all libraries may need to be re-compiled with that compiler

67

Platform-level defenses

1. Stack canaries

2. Non-executable memory (NX, WX)

3. Address space layout randomization (ASLR)

More advanced defenses

1. More randomisation: eg. pointer & memory encryption

2. More memory safety checks:

 eg. checks on bounds (spatial) or on allocation (temporal)

3. Checks on control flow

4. Execution-aware memory protection

History shows that all new defenses are eventually defeated...

now standard

on many

platforms

68

1. Stack canaries

• Stack canary aka stack cookie is written on the stack in front of

the return address and checked when function returns

• A careless stack overflow will overwrite the canary,

which can then be detected

• first introduced in as StackGuard in gcc

• only very small runtime overhead

69

Stack canaries

Stack without canary Stack with canary

x

return address

buf[4..7]

buf[0..3]

x

return address

buf[4..7]

buf[0..3]

canary value

70

Further improvements

• More variation in canary values: eg not a fixed values hardcoded

in binary but a random values chosen for each execution

• Better still, XOR the return address into the canary value

• Include a null byte in the canary value, because C string

functions cannot write nulls inside strings

A careful attacker can still defeat canaries, by

• overwriting the canary with the correct value

• corrupting a pointer to point to the return address

to then change the return address without killing the canary

eg changing to
return

buf[4..7]

buf[0..3]

canary value
char* ptr

return

buf[4..7]

buf[0..3]

canary value
char* ptr

71

Aside: corrupting pointers

Overwriting pointers is especially interesting because subsequent

uses of that pointer then read/write data in another place that

attacker can choose.

100 char* ptr;

101 char[8] buf;

 ...

200 fgets(buf, 12, stdin); // overflow corrupts ptr,

 // e.g. to point to the position of return address

 ...

210 fgets(ptr, 100, stdin);

 // corrupts any location chosen by the

 // attacker when overflowing buf in line 200

72

Further improvements

• Re-order elements on the stack to reduce the potential impact of

overruns

• swapping parameters buf and fp on stack changes whether

overrunning buf can corrupt fp

• which is especially dangerous if fp is a function pointer

• hence it is safer to allocated array buffers ‘above’ all other

local variables

 First introduced by IBM’s ProPolice.

• A separate shadow stack

• with copies of return addresses, used to check for corrupted

return addresses

• Of course, the attacker should not be able to corrupt the

shadow stack

73

Windows 2003 Stack Protection

Nice example of the ways in which things can go wrong...

• /GS command line option in Visual Studio add stack canaries

• When canary is corrupted, control is transferred to an exception

handler

• Exception handler information is stored ...

 on the stack!

• Attacker can corrupt the exception handler info on the stack, in

the process corrupt the canaries, and then let Stack Protection

transfer control to a malicious exception handler

 [http://www.securityfocus.com/bid/8522/info]

• Countermeasure: only allow transfer of control to registered

exception handlers

74

2. ASLR (Address Space Layout Randomisation)

• Attacker needs detailed info about memory layout

– eg to jump to specific piece of code

– or to corrupt a pointer at known position on the stack

• Attacks become harder if we randomise the memory layout every
time we start a program

• ie. change the offset of the heap, stack, etc, in memory by
some random value

• Attackers can still analyse memory layout on their own laptop,
but will have to determine the offsets used on the victim’s
machine to carry out an attack

• NB security by obscurity, despite its bad reputation, is a really
great defense mechanism to annoy attackers!

• Once the offset leaks, we’re back to square one…

75

3. Non-eXecutable memory (NX, aka WX, W^X, DEP)

Distinguish

• X: executable memory (for storing code)

• W: writeable, non-executable memory (for storing data)

and let processor refuse to execute non-executable code

Attackers can then no longer jump to their own attack code,
as any input provide as attack code will be non-executable

aka DEP (Data Execution Prevention).

Intel calls it eXecute-Disable (XD)

AMD calls it Enhanced Virus Protection

Limitation:

 this technique does not work for JIT (Just In Time) compilation,
where e.g. JavaScript is compiled to machine code at run time.

77

Defeating NX: return-to-libc attacks

With NX, code injection attacks no longer possible,

but code reuse attacks still are...

• Attackers can no longer corrupt code or insert their own code,
but can still corrupt code pointers

• Called control-flow hijack in SoK paper

So instead of jumping to own attack code

corrupt return address to jump to existing code

 esp. library code in libc

libc is a rich library that offers lots of functionality,
eg. system(), exec(),

which provides attackers with all they need...

78

(ROP)

Next stage in evolution of attacks, as people removed or protected
dangerous libc calls such as system()

Instead of using a library call, attackers can

• look for gadgets, small snippets of code which end with a return,
in the existing code base

...; ins1 ; ins2 ; ins3 ; ret

• chain these gadgets together as subroutines to form a program
that does what they want

This turns out to be doable

• Most libraries contain enough gadgets to provide a Turing
complete programming language

• ROP compilers can then translate arbitrary code to a sequence
of these gadgets

A newer variant is Jump-Oriented Programming (JOP) which uses a
different kind of code fragment as gadgets

79

	Slide 1: Software Security Memory corruption public enemy number 1
	Slide 2: CWE Top 25 https://cwe.mitre.org/top25
	Slide 3: Memory corruption vulns vs the rest at Microsoft 2006-2018
	Slide 4: Memory corruption bugs in Chromium project – since 2015
	Slide 5: Security in the development lifecycle (Microsoft SDL version 5.2)
	Slide 6: Finding & fixing memory corruption – next weeks
	Slide 7: More structural prevention - later
	Slide 8: Overview (this & next weeks)
	Slide 9: Reading material
	Slide 10: Essence of the problem
	Slide 11: undefined behaviour: anything can happen
	Slide 12: undefined behaviour: anything can happen
	Slide 13
	Slide 14: undefined behaviour: nothing may happen
	Slide 15: Anything attackers wants?
	Slide 16: Nothing may happen
	Slide 17: Solution to this problem
	Slide 18: Tony Hoare on design principles of ALGOL 60
	Slide 19: Hope on the horizon?
	Slide 20: More memory corruption problems
	Slide 21: Spot all (potential) defects
	Slide 22: Causes of memory corruption problems
	Slide 23: Exploiting this
	Slide 24: Process memory layout
	Slide 25: Stack layout
	Slide 26: Stack overflow attack - case 1
	Slide 27: Stack overflow attack - case 1
	Slide 28: Stack overflow attack - case 2
	Slide 29: Stack overflow attack - case 2
	Slide 30: Code injection vs code reuse
	Slide 31: What to attack? Corrupting the stack
	Slide 32: What to attack? Corrupting data on the heap
	Slide 33: What to attack? Corrupting vtables on the heap
	Slide 34: Recurring theme in attacks: breaking abstractions
	Slide 35: Spotting the problem
	Slide 36: Reminder: C chars & strings
	Slide 37: Example: gets
	Slide 38: Example: strcpy
	Slide 39: Spot the defect!
	Slide 40: Spot the defect! (1)
	Slide 41: Better libraries
	Slide 42: Spot the defect! (2)
	Slide 43: Spot the defect! (2)
	Slide 44: Spot the defect! (2)
	Slide 45: Example: strcpy and strncpy
	Slide 46: Spot the defect! (3)
	Slide 47: Spot the defect! (3)
	Slide 48: Spot the defect! (3)
	Slide 49: Spot the defect! (3)
	Slide 50: Better still
	Slide 51: Spot the defect!
	Slide 52: Spot the defect!
	Slide 53: Spot the defect!
	Slide 54: Spot the defect!
	Slide 55: NB absence of language-level security
	Slide 56: Spot the defect!
	Slide 57: Spot the defect! (code from Linux kernel)
	Slide 58: Spot the defect! (code from Linux kernel)
	Slide 59: Spot the defect! (code from Windows kernel)
	Slide 60: Spot the defect!
	Slide 61: Spot the defect!
	Slide 62: Format string attacks
	Slide 63: Format string attacks
	Slide 64: Preventing format string attacks is EASY
	Slide 65: Recap: memory corruption
	Slide 66: Platform-level defences
	Slide 67: Platform-level defences
	Slide 68: Platform-level defenses
	Slide 69: 1. Stack canaries
	Slide 70: Stack canaries
	Slide 71: Further improvements
	Slide 72: Aside: corrupting pointers
	Slide 73: Further improvements
	Slide 74: Windows 2003 Stack Protection
	Slide 75: 2. ASLR (Address Space Layout Randomisation)
	Slide 77: 3. Non-eXecutable memory (NX, aka WX, W^X, DEP)
	Slide 78: Defeating NX: return-to-libc attacks
	Slide 79: (ROP)

