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1. Out-of-bounds Write

 (CWE-787)

2. Cross Site Scripting (XSS)                   

(CWE-79)

4. Use After Free 

(CWE-416)

6. Improper Input Validation

 (CWE-20)

7. Out-of-bounds Read

 (CWE-125)

3. SQL injection

 (CWE-89)

8. Path Traversal

 (CWE-22)

9. Client-Side Request Forgery (CSRF)  

(CWE-352)

5. OS Command Injection

 (CWE-78)

10. Unrestricted Upload of Dangerous 

File Type (CWE-434)

11. Missing Authorisation

 (CWE-862)

13. Improper Authentication

 (CWE-287)

14. Integer Overflow or Wraparound 

(CWE-190)

15. Deserialisation of Untrusted Data

 (CWE-502)

12. NULL Pointer Deference

 (CWE-476)

16. Command Injection

 (CWE-77)

17. Improper Restriction of Operations 

on Memory Buffer Bounds (CWE-119)

18. Hardcoded Credentials 

(CWE-798)

19. Server-Side Request Forgery 

(CSRF) (CWE-918)

21. Race Condiiton 

(CWE-362)

22. Improper Privilige Management

 (CWE-269)

23. Code Injection

(CWE-94)

20. Missing Authentication

 (CWE-306)

24. Incorrect Authorisation

 (CWE-863)

25. Incorrect Default Permissions           

(CWE-276)

CWE Top 25      https://cwe.mitre.org/top25 



Memory corruption vulns vs the rest  

at  Microsoft 2006-2018
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[Source: https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code  

 and  “Trends, challenge, and shifts in software vulnerability mitigation”, presentation by Matt Miller 

at BlueHat IL 2019]

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code


Memory corruption bugs in Chromium project – since 2015

70% of high severity & critical security bugs are memory unsafety problems 

5 of the 130 critical security flaws in Chrome were not  clearly due to memory corruption

[Source: https://www.chromium.org/Home/chromium-security/memory-safety ]
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https://www.chromium.org/Home/chromium-security/memory-safety


Security in the development lifecycle

(Microsoft SDL version 5.2) 
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aka SAST
(Static Application 
Security Testing)

aka DAST
(Dynamic Application 

Security Testing)



Finding & fixing memory corruption – next weeks

week 3: exercise
Static analysis 
with PREfast

week4: group project
fuzzing  afl

memory sanitizers  ASan, MSan

6



More structural prevention - later
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LangSec for safer 
parser code

Safer programming 
languages



Overview (this & next weeks)

1. How do memory corruption flaws work?

2. What can be the impact?

3. How can we spot such problems in C(++) code?

Tool-support for this

• SAST:  PREfast individual / pair project

• DAST: Fuzzing group project

4. What can ‘the platform’ do about it?

ie. the compiler, system libraries, hardware, OS, ..

5. What can the programmer do about it?
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Reading material

• SoK article: ‘Eternal War in Memory’  S&P 2013

– Excl. Section VII. 

– This article is quite dense. You are not expected to be able to 

reproduce or remember all the discussion here.  It’s good 

enough if you can follow the article, with a steady supply of 

coffee while googling if the terminology is not clear.

      

• Chapter 3.1 & 3.2  in  lecture notes on memory-safety

We’ll revisit ‘safe’ programming languages – not just memory-safety but 

also other froms of safety – and  rest of Chapter 3 in later lectures
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Essence of the problem

Suppose in a C program you have an array of length 4

    char buffer[4];

What happens if the statement below is executed?

    buffer[4] = 'a'; 

                

We don’t know!

This is defined to be 

ANYTHING can happen
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undefined behaviour: anything  can happen

6



7

undefined behaviour: anything  can happen
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undefined behaviour: nothing may happen

14



Anything attackers wants?

    char buffer[4];

    buffer[4] = 'a';  

  

If the attacker controls the value  'a'                               

then anything that the attacker wants  can often happen…

• If we are lucky : program crashes with SEGMENTATION FAULT

• If we are unlucky : program does not crash, but silently 

allows data corruption or remote code execution (RCE) 

and we won’t know this until it’s too late 
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Nothing may happen

    char buffer[4];

    buffer[4] = 'a';  

      

A compiler could remove  the assignment above,                          

ie. do nothing

Compilers actually do this (as part of optimisation) and this can 

cause security problems; examples later & in the lecture notes.  
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Solution to this problem

• Check array bounds at runtime

– Algol 60 proposed this back in 1960!

• Unfortunately, C and C++ have not adopted this solution.

• Why?  

• For efficiency
Regrettably, people often choose performance over 

security

• As a result, buffer overflows have been the no 1 security 

problem in software ever since

• Check out CVEs mentioning buffer (or buffer%20overflow) 

       https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer

• Fortunately: Perl, Python, Java, C#, PHP, Javascript, and 

Visual Basic and Rust do check array bounds
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Tony Hoare on design principles of ALGOL 60

In his Turing Award lecture in 1980

     “The first principle was security : ... every subscript was checked 

at run time against both the upper and the lower declared 

bounds of the array. Many years later we asked our customers 

whether they wished an option to switch off these checks in the 

interests of efficiency. Unanimously, they urged us not to - they 

knew how frequently subscript errors occur on production runs 

where failure to detect them could be disastrous.

     I note with fear and horror that even in 1980, language designers 

and users have not learned this lesson. In any respectable 

branch of engineering, failure to observe such elementary 

precautions would have long been against the law.”

[C.A.R. Hoare, The Emperor’s Old Clothes, Communications of the ACM, 1980]
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Hope on the horizon?   

especially thanks to Rust 

https://www.cisa.gov/case-memory-safe-roadmaps
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More memory corruption problems

Errors with pointers and with dynamic memory (aka the heap)

• Have you ever written a C(++) program that uses pointers? 

• Have you ever had such a program crashing?

• Have you even written a C(++) program that uses dynamic 
memory, ie.  malloc() and  free()?

• Have you ever had such a program crashing?

In C/C++, the programmer is responsible for memory 

management and this is very error-prone

– Technical term: C and C++ do not offer memory-safety  

             (see lecture notes, §3.1-3.2)
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Spot all (potential) defects

1000 …

  1001 void f(){ 

  1002   char* buf, buf1, buf24;

  1003   buf = malloc(100); 

  1004   buf[0] = ’a’;

  ...

 98991   free(buf24);

 98992   buf[0] = ’b’;

  ...

999991   free(buf);

999992   buf[0] = ’c’;

999993   buf1 = malloc(100);

999994   buf[0] = ’d’

999995 }  

potential use-after-free

if  buf  & buf24 are aliased

null dereference                          

if  malloc failed

use-after-free; buf[0] points 

to de-allocated memory

use-after-free, but now buf[0] 

may point to memory that has 

been re-allocated for buf1

memory leak; pointer buf1 

to this memory is lost & 

memory is never freed
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Causes of memory corruption problems

• Access outside array bounds aka buffer overflow

• overread or overwrite

overreads are not a corruption issue, but confidentiality  issue

• Pointer trouble: 

• buggy pointer arithmetic, 

• dereferencing null pointer, 

• using a dangling pointer aka stale pointer 

• caused by e.g. use-after-free or double-free

• Memory management problems:

• Forgetting to check for failures in allocation 

• Forgetting to de-allocate, aka memory leaks 

• not a corruption issue, but an availability  issue

• Other ways to break memory abstractions: missing null 

terminators, too many null terminators, type casts, type 

confusion, …
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Exploiting this
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Process memory layout

Arguments/ Environment

Stack

Unused Memory

Heap (dynamic data)

Static Data 

Program Code .text
Low 

addresses

High 

addresses
Stack grows

down, 

by procedure 

calls

Heap grows

up, 

eg. by malloc 

and new.data
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Stack layout

The stack consists of Activation Records aka stack frames:

AR main()

AR f()

Stack grows

downwards

void f(int x) {

  char[8] buf;

  gets(buf);

}

void main() { 

  f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer buf goes

upwards
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Stack overflow attack - case 1  

What if  gets() reads more than 8 bytes ?

AR main()

AR f()

void f(int x) {

  char[8] buf;

  gets(buf);

}

void main() { 

  f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]
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Stack overflow attack - case 1  

What if  gets() reads more than 8 bytes ?

Attacker can jump to arbitrary point in the code!

AR main()

AR f()

void f(int x) {

  char[8] buf;

  gets(buf);

}

void main() { 

  f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

code reuse
attack
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Stack overflow attack - case 2

What if  gets() reads more than 8 bytes ?

Attackers can also jump to their own code (aka shell code)

AR main()

AR f()

void f(int x) {

  char[8] buf;

  gets(buf);

}

void main() { 

  f(…); …
}

void format_hard_disk(){…}

x

return address

/bin/sh 

exec 

code injection
attack
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Stack overflow attack - case 2

What if  gets() reads more than 8 bytes ?

Attacker can jump to his own code (aka shell code)

AR main()

AR f()

void f(int x) {

  char[8] buf;

  gets(buf);

}

void main() { 

  f(…); …
}

void format_hard_disk(){…}

x

return address

/bin/sh 

exec 

never use gets!

gets has been removed from

the C standard in 2011
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Code injection vs code reuse

Two types of attacks in these examples

(2) is a code injection attack                                                                

attackers inject their own shell code in some buffer                                      

and corrupt return addresss to point to this code                         

In the example, exec('/bin/sh')

This is the classic buffer overflow attack                                                   

[Smashing the stack for fun and profit, Aleph One, 1996]

(1) is a code reuse attack                                                                               

attackers corrupt return address to point to existing code                             

In the example, format_hard_disk 

Lots of details to get right!  

• knowing precise location of return address and other data on 

stack, knowing address of code to jump to, .... 
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What  to attack? Corrupting the stack

Suppose attacker can overflow username 

This can corrupt the return address, but also other data on the stack:   

      is_super_user, diskquota, filename, x, b, error_handler 

• But not j, unless the compiler chooses to allocate variables in a 

different order, which the compiler is free to do

• Corruption function pointers such as error_handler is particularly 

interesting! Why?

void f(int x,    

       void(*error_handler)(int), 

       bool b) {

  int  diskquota = 200; 

  bool is_super_user = false;

char* filename = "/tmp/scratchpad";    

  char[8] username;

  int j = 12; 

  ...

}   

function pointer
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What  to attack? Corrupting data on the heap

struct BankAccount {

  int  number; 

  char username[20];

  int  balance;

}

Suppose attacker can overflow username

This can corrupt other fields in the struct

• Which fields depends on the order of  the fields in memory. 
     
     The compiler is free to choose this.

32



What  to attack? Corrupting vtables on the heap

C++ code uses late binding to resolve (so-called virtual) method calls

  Rectangle r;  

  Circle c;  

  Shape s;

  _surface_area = r.area() + c.area() + s.area();

Which code to execute for s.area() is determined at runtime.

To do this,  a table of function pointers, the vtable, 

is maintained that tells which code to execute for each method

This provides many function pointers for attackers to mess with!
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Recurring theme in attacks: breaking abstractions
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Spotting the problem



• A char in C is always exactly one byte

• A string is a sequence of chars terminated by a NULL byte

• String variables are pointers of type char* 

char* str = "hello";   // a string str

Here strlen(str) will be 5  

str

h e l l o \0

Reminder: C chars & strings
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Example: gets

char buf[20];

 gets(buf); // read user input until 

            // first EoL or EoF character

• Never  use gets

• gets has been removed from the C library                         

so this code will no longer compile

• Use fgets(buf, size, file) instead
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Example: strcpy

char dest[20];

 strcpy(dest, src); // copies string src to dest

•  strcpy assumes that 1  dest  is long enough  

                                and   src is null-terminated 

• Use strncpy(dest, src, size) instead

Beware of difference between sizeof and strlen

sizeof(dest) = 20      // size of an array

strlen(dest) = number of chars up to first null byte

// length of a string
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Spot the defect!  

char buf[20];

char prefix[] = "http://";

char* path;

...

strcpy(buf, prefix); 

  // copies the string prefix to buf

strncat(buf, path, sizeof(buf)); 

  // concatenates path to the string buf
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Spot the defect! (1)

char buf[20];

char prefix[] = "http://";

char* path;

...

strcpy(buf, prefix); 

  // copies the string prefix to buf

strncat(buf, path, sizeof(buf)); 

  // concatenates path to the string buf

strncat’s 3rd parameter is number 

of  chars to copy, not the buffer size

So this should be sizeof(buf)-7
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Better libraries

Keeping track of the space left in buffers when using strncpy and 
strncpy is error-prone. Better alternatives: 

• strlcpy(dst,src,size) and strlcat(dst,src,size) 
Here size is the size of destination array dst, not the maximum 
length copied. These are consistently used in OpenBSD.

• Functions in Microsoft’s Strsafe.h also always takes destination 

size as argument. Moreover, they guarantee null-termination. 

Other alternatives:

• glib.h provides Gstring type for dynamically growing null-

terminated strings in C

• C++ string objects are less error-prone than C strings

– but data() and c-str()return a C string, ie. a char*, and 

result of data()is not always null-terminated on all platforms.
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Spot the defect! (2)

char src[9];

 char dest[9];

 char* base_url = "www.ru.nl";

 strncpy(src, base_url, 9); 

    // copies base_url to src

 strcpy(dest, src);

    // copies src to dest
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char src[9];

 char dest[9];

 char* base_url = "www.ru.nl";

 strncpy(src, base_url, 9); 

    // copies base_url to src

 strcpy(dest, src);

    // copies src to dest

    

Spot the defect! (2)

base_url is 10 chars long, incl. 

its null terminator, so src will not 

be null-terminated
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Spot the defect! (2) 

char src[9];

 char dest[9];

 char* base_url = ”www.ru.nl”;

 strncpy(src, base_url, 9); 

    // copies base_url to src

 strcpy(dest, src);

    // copies src to dest

  so strcpy will overrun the buffer dest, 

because src is not null-terminated

base_url is 10 chars long, incl. 

its null terminator, so src will not 

be null-terminated
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Example: strcpy and strncpy

Don’t replace

    strcpy(dest, src)

     with  

    strncpy(dest, src, sizeof(dest))

      but with

    strncpy(dest, src, sizeof(dest)-1)

    dst[sizeof(dest)-1] = '\0'; 

     if you want dest to be null-terminated!

NB: a strongly typed programming language would 

guarantee  that strings are always null-terminated,                    

without the programmer having to worry about this...
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Spot the defect!  (3)

char *buf;

 int  len;

...

  

 buf = malloc(MAX(len,1024)); // allocate buffer 

 read(fd,buf,len);  // read len bytes into buf

  What happens if  len is negative?

The length parameter of  read  is unsigned!

So negative len is interpreted as a big positive one! 

AAAAAAAAARGH! 

(At the exam, you’re not expected to remember  
  that read treats its 3rd argument as an unsigned int)

46



Spot the defect!  (3)

char *buf;

 int  len;

...

 

 if (len < 0)

    {error ("negative length"); return; }

 buf = malloc(MAX(len,1024));

 read(fd,buf,len);

Note that buf is not guaranteed to be null-terminated;                                 

we ignore this for now.
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Spot the defect!  (3)

char *buf;

 int  len;

...

  

 if (len < 0)

    {error ("negative length"); return; }

 buf = malloc(MAX(len,1024));

 read(fd,buf,len);

 

  

What if  the malloc() fails,

because we ran out of  memory ?
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Spot the defect!  (3)

char *buf;

 int  len;

...

  

 if (len < 0)

    {error ("negative length"); return; }

 buf = malloc(MAX(len,1024));

 if (buf==NULL) { exit(-1);} 

              // or something a bit more graceful 

 read(fd,buf,len);
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Better still

char *buf;

 int  len;

...

 if (len < 0)

    {error ("negative length"); return; }

 buf = calloc(MAX(len,1024)); 

       //to initialise allocate memory to 0

 if (buf==NULL) { exit(-1);} 

              // or something a bit more graceful 

 read(fd,buf,len);
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Spot the defect!  

#define MAX_BUF 256

void BadCode (char* input)

{   short len;

    char buf[MAX_BUF];

  

    len = strlen(input);

    if (len < MAX_BUF) strcpy(buf,input);

}
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Spot the defect! 

#define MAX_BUF 256

void BadCode (char* input)

{   short len;

    char buf[MAX_BUF];

  

    len = strlen(input);

    if (len < MAX_BUF) strcpy(buf,input);

}

    

 The integer overflow is the root problem,                               

the (heap) buffer overflow it causes makes it exploitable

See https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=integer+overflow

What if  in is longer than 32K ?

len may be a negative number, 

due to integer overflow

hence: potential

buffer overflow
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Spot the defect! 

#define MAX_BUF 256

void BadCode (char* input)

{   short len;

    ...

  

    len = strlen(input);

    ...

}

    

 

 

Just this strlen call is already a 

potential problem:  if  input is null  or 

if  it is not null-terminated then 
strlen(input) results in 

undefined behaviour
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Spot the defect!  

bool CopyStructs(InputFile* f, long count)

{   structs = new Structs[count];

    for (long i = 0; i < count; i++)

       { if !(ReadFromFile(f,&structs[i])))

             break;

       }

 }

And this integer overflow can lead to a (heap) buffer overflow

Since 2005 Visual Studio C++ compiler adds check to prevent this

effectively does a 
malloc(count*sizeof(type)) 

which may cause integer overflow
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NB absence of language-level security

In a safer programming language than C/C++,                           

the programmer would not have to worry about

• writing past array bounds

(because you'd get an IndexOutOfBoundsException instead)

• strings not having a null terminator

• implicit conversions from signed to unsigned integers 
(because the type system/compiler would forbid this or warn)

• malloc possibly returning null
(because you'd get an OutOfMemoryException instead)

• malloc not initialising memory                                                                             
(because language could always ensure default initialisation)

• integer overflow                                                                                        
(because you'd get an IntegerOverflowException instead)

• ...
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Spot the defect!  

1. void* f(int start) {

2. if (start+100 < start) return SOME_ERROR_CODE; 

3. // checks for overflow  

4. for (int i=start; i < start+100; i++) {

5. . . . // i will not overflow

6. }   }

Integer overflow is undefined behaviour! This means

• You cannot assume that overflow produces a negative number;       
so line 2 is not a good check for integer overflow.

• Worse still, if integer overflow occurs, behaviour is undefined: 

• So compiled code can do anything if start+100 overflows

• So compiled code can do nothing if start+100 overflows

• This means the compiler can remove line 2

Modern C compilers are clever enough to know that x+100 < x      

is always false, and optimise code accordingly
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Spot the defect!   (code from Linux kernel)

1. unsigned int tun_chr_poll(  struct file *file,  

 2.                              poll_table *wait)

 3. { ...

 4.  struct sock *sk = tun->sk; // take sk field of tun  

 5.  if (!tun) return POLLERR; // return if tun is NULL

 6.  ... 

 7. }
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Spot the defect!   (code from Linux kernel)

1. unsigned int tun_chr_poll(  struct file *file,  

 2.                              poll_table *wait)

 3. { ...

 4.  struct sock *sk = tun->sk; // take sk field of tun  

 5.  if (!tun) return POLLERR; // return if tun is NULL

 6.  ... 

 7. }

If tun is a null pointer, then tun->sk is undefined 
What this function does when tun is null is undefined:                                           

ANYTHING may happen then.

So compiler can remove line 5: the behaviour when tun is NULL is 

undefined anyway, so this check is 'redundant'.

Standard compilers (gcc, clang) do this 'optimalisation' !

This is code from the Linux kernel where removing line 5 led to a 

security vulnerability [CVE-2009-1897]
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Spot the defect!   (code from Windows kernel) 

// TCHAR is 1 byte ASCII or multiple byte UNICODE 

#ifdef UNICODE

#  define TCHAR wchar_t          

#  define _tprintf _wprintf  

#else

#  define TCHAR char

#  define _tprintf _printf

#endif

TCHAR buf[MAX_SIZE];

_tprintf(buf, sizeof(buf), input);

 

Switch from ASCI to UNICODE caused lots of buffer overflows

[slide from presentation by Jon Pincus]

ASCI character, 1 byte

wide UNICODE character, > 1 byte 

print-function for wide character strings

print-function for ASCI character strings

sizeof(buf) is the size in bytes,                   

but this parameter should be the 

number of  characters   
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Spot the defect!  

#include <stdio.h>

int main(int argc, char* argv[]) 

{  if (argc > 1) 

     printf(argv[1]);

   return 0;

}
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Spot the defect!  

#include <stdio.h>

int main(int argc, char* argv[]) 

{  if (argc > 1) 

     printf(argv[1]);

   return 0;

}

     This program is vulnerable to format string attacks, where 
calling the program with strings containing special 
characters can result in a buffer overflow attack.
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Format string attacks 

Type of memory corruption discovered in 2000

• Strings can contain special characters,  eg  %s in

    printf("Cannot find file %s", filename);

  Such strings are called format strings

• What happens if we execute the code below?

     printf("Cannot find file %s");

 

• What can happen if we execute

     printf(string) 

     where string is  user-supplied ? 

     Esp. if it contains special characters, eg %s, %x, %n, %hn?
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Format string attacks

If attacker can control malicious input  s  to printf(s)                
then this can

• read  the stack   

%x reads and prints bytes from stack  

so input %x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x

%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%
x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x%x...

dumps the stack, including passwords, keys,… stored on 
the stack

• corrupt  the stack

 %n writes the number of characters printed to the stack                         

so input    12345678%n writes the value 8 to the stack

• read arbitrary memory                   

a carefully crafted input string of the form

\xEF\xCD\xCD\xAB %x%x...%x%s 

print the string at memory address ABCDCDEF

63



1. Always  replace     printf(str)                           

            with    printf("%s", str)

2. Compiler or static analysis (SAST) tool could warn if the

number of  arguments does not match the format string

As e.g. in     printf ("x is %i and y is %i", x);

• gcc has (far too many!) command line options for this:                

-Wformat –Wformat-no-literal –Wformat-security...

• If the format string is not a compile-time constant, we cannot
decide this at compile time 

Would you then want your compiler or SAST tool to a give false
positive or  false negative? 

Check https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=format+string

to see how common format strings still are

Preventing format string attacks is EASY

-Wformat-overflow 
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Recap: memory corruption

• #1 weakness in C / C++  

– because these language are not memory-safe and 

programmer is responsible for memory management

• Tricky to spot

• Typical cause: programming with arrays, pointers, strings 

& and dynamic (ie heap-allocated) memory 

• Related attacks

• Format string attack: another way of corrupting stack

• Integer overflows: useful a stepping stone to getting a 

buffer to overflows, or dangerous in its own right 
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Platform-level defences 
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Platform-level defences

• Defenses the compiler, hardware, OS,… can take, 

without the programmer having to know

• Some defenses need OS & hardware support

• Some defenses cause overhead

– if this overhead is unacceptable in production code,                   

we can still use it in testing phase

• Some defenses may break binary compatibility

– if the compiler adds extra book-keeping & checks,                           

all libraries may need to be re-compiled with that compiler
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Platform-level defenses

1. Stack canaries

2. Non-executable memory (NX,  WX)

3. Address space layout randomization (ASLR)

More advanced defenses

1. More randomisation: eg. pointer & memory encryption

2. More memory safety checks:         

  eg. checks on bounds (spatial) or on allocation  (temporal) 

3. Checks on control flow 

4. Execution-aware memory protection 

History shows that all new defenses are eventually defeated...

now standard 

on many 

platforms
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1. Stack canaries

• Stack canary aka stack cookie is written on the stack in front of 

the return address and checked when function returns

• A careless stack overflow will overwrite the canary,                      

which can then be detected

• first introduced in as StackGuard in gcc

• only very small runtime overhead
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Stack canaries

Stack without  canary                             Stack with canary

x

return address

buf[4..7]

buf[0..3]

x

return address

buf[4..7]

buf[0..3]

canary value
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Further improvements

• More variation in canary values: eg not a fixed values hardcoded 

in binary but a random values chosen for each execution  

• Better still, XOR the return address into the canary value

• Include a null byte in the canary value,  because C string 

functions cannot write nulls inside strings

A careful attacker can still defeat canaries, by

• overwriting the canary with the correct value

• corrupting a pointer to point to the return address

to then change the return address without killing the canary

eg changing to
return

buf[4..7]

buf[0..3]

canary value
char* ptr

return

buf[4..7]

buf[0..3]

canary value
char* ptr
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Aside: corrupting pointers

Overwriting pointers is especially interesting because subsequent 

uses of that pointer then read/write data in another place that 

attacker can choose. 

100  char* ptr;  

101  char[8] buf;

    ...

200  fgets(buf, 12, stdin);  // overflow corrupts ptr,

     // e.g. to point to the position of return address 

   ...

210 fgets(ptr, 100, stdin); 

           // corrupts any location chosen by the

           // attacker when overflowing buf in line 200 
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Further improvements

• Re-order elements on the stack to reduce the potential impact of 

overruns

• swapping parameters buf and fp on  stack changes whether 

overrunning buf can corrupt fp

• which is especially dangerous if fp is a function pointer

• hence it is safer to allocated array buffers ‘above’ all other 

local variables

 First introduced by IBM’s ProPolice.

• A separate shadow stack 

• with copies of return addresses, used to check for corrupted 

return addresses

• Of course, the attacker should not be able to corrupt the 

shadow stack
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Windows 2003 Stack Protection

Nice example of the ways in which things can go wrong...

• /GS command line option in Visual Studio add stack canaries

• When canary is corrupted, control is transferred to an exception 

handler

• Exception handler information is stored ... 

         on the stack!

• Attacker can corrupt the exception handler info on the stack, in 

the process corrupt the canaries, and then let Stack Protection 

transfer control to a malicious exception handler

      [http://www.securityfocus.com/bid/8522/info]

• Countermeasure: only allow transfer of control to registered 

exception handlers
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2. ASLR (Address Space Layout Randomisation)

• Attacker needs detailed info about memory layout 

– eg to jump to specific piece of code

– or to corrupt a pointer at known position on the stack

• Attacks become harder if we randomise the memory layout every 
time we start a program

• ie. change the offset of the heap, stack, etc, in memory by 
some random value

• Attackers can still analyse memory layout on their own laptop, 
but  will have to determine the offsets used on the victim’s 
machine to carry out an attack

• NB security by obscurity, despite its bad reputation, is a really 
great defense mechanism to annoy attackers!

• Once the offset leaks, we’re back to square one…
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3. Non-eXecutable memory (NX, aka WX, W^X, DEP)

Distinguish  

• X: executable memory (for storing code)

• W: writeable, non-executable memory (for storing data)

and let processor refuse to execute non-executable code

Attackers can then no longer jump to their own attack code,                          
as any input provide as attack code will be  non-executable

aka DEP (Data Execution Prevention).

Intel calls it eXecute-Disable (XD) 

AMD calls it Enhanced Virus Protection

Limitation:

      this technique does not work for JIT (Just In Time) compilation, 
where e.g. JavaScript is compiled to machine code at run time.
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Defeating NX: return-to-libc attacks

With NX, code injection attacks no longer possible,                                            

but code reuse attacks still are...

• Attackers can no longer corrupt code or insert their own code,          
but can still corrupt code pointers 

• Called control-flow hijack in SoK paper                                                                

So instead of jumping to own attack code  

corrupt return address to jump to existing code

  esp. library code in libc

libc is a rich library that offers lots of functionality,                              
eg.   system(), exec(), 

which provides attackers with all they need...

78



(ROP)

Next stage in evolution of attacks, as people removed or protected 
dangerous libc calls such as system()

Instead of using a library call, attackers can

• look for gadgets, small snippets of code which end with a return, 
in the existing code base

...; ins1 ; ins2 ; ins3 ; ret

• chain these gadgets together as subroutines to form a program 
that does what they want

This turns out to be doable

• Most libraries contain enough gadgets to provide a Turing 
complete programming language

• ROP compilers can then translate arbitrary code to a sequence 
of these gadgets

A newer variant is Jump-Oriented Programming (JOP) which uses a 
different kind of code fragment as gadgets
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