
Software Security

Static Analysis with PREfast & SAL

Erik Poll

Digital Security group

Radboud University Nijmegen

1

Finding & fixing memory corruption

This week
Next week

2

Static analysis aka source code analysis aka SAST

Automated analysis at compile time to find potential bugs

Broad range of techniques, from light- to heavyweight:

1. simple syntactic checks, incl. grep or CTRL-F

 grep " gets(" *.cpp

2. type checking

 eg. warning if an int is added to a bool

3. more advanced analyses taking semantics into account

using: dataflow analysis, control flow analysis, abstract interpretation,

symbolic evaluation, constraint solving, program verification, model

checking...

All compilers do some static analysis

Lightweight static analysis tools also called source code scanners.

Tools aiming at security: SAST (Static Application Security Testing)

3

Why static analysis? (1)

Traditional methods of finding errors:

• testing

• code inspection

Security errors can be hard to find by these methods,

because they

• only arise in unusual circumstances

– particular inputs uncommon execution paths, ...

• code base is too large for a human code inspection

Here static analysis can provide major improvement

4

False positives & false negatives

Important quality measures for any static analysis:

A. rate of false positives

– tool complains about non-error

B. rate of false negatives

– tool fails to complain about error

Which do you think is worse?

False positives are worse, as they kill usability ! !

Alternative (confusing!) terminology: analysis can be called

• sound

• complete

5

it only finds real bugs, ie. no false positives

it finds all bugs, ie. no false negatives

Very simple static analyses

• Warning about bad names & violations of conventions, eg

– constants not written in ALL CAPS

– Java method starting with capital letter

– C# method starting with lower case letter

– …

• Enforcing other (company-specific) naming conventions

and coding guidelines

This is also called style checking

6

BOOL AddTail(LPVOID p) { ... if(queue.GetSize() >= this->_limit); { while(queue.GetSize() > this->_limit-1) { ::WaitForSingleObject(handles[SemaphoreIndex], 1); queue.Delete(0); } } ... }

More interesting static analyses

• Warning about unused variables

• Warning about dead/unreachable code

• Warning about missing initialisation

– possibly as part of language definition (eg in Java) and

checked by compiler

This may involve

control flow analysis

 if (b) { c = 5; } else { c = 6; } initialises c

 if (b) { c = 5; } else { d = 6; } does not

data flow analysis

 d = 5; c = d; initialises c

 c = d; d = 5; does not

7

Spot the defect!

BOOL AddTail(LPVOID p) {

 ...

 if (queue.GetSize() >= this->_limit);

 {

 while(queue.GetSize() > this->_limit-1)

 {

 ::WaitForSingleObject(handles[SemaphoreIndex],1);

 queue.Delete(0);

 }

 }

}

Suspicious code in xpdfwin found by PVS-Studio (www.viva64.com).

 V529 Odd semicolon ';' after 'if' operator.

Note that this is a very simple syntactic check!

You could (should?) use coding guidelines that disallow this, even

though it is legal C++

8

OOL AddTail(LPVOID p) { ... if(queue.GetSize() >= this->_limit); { while(queue.GetSize() > this->_limit-1) { ::WaitForSingleObject(handles[SemaphoreIndex], 1); queue.Delete(0); } } ... }

Spot the security flaw!

static OSStatus SSLVerifySignedServerKeyExchange (SSLContext *ctx, bool isRsa, SSLBuffer

signedParams, uint8_t *signature, UInt16 signatureLen)

{ OSStatus err;

..

 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

 ...

 fail:

 SSLFreeBuffer(&signedHashes);

 SSLFreeBuffer(&hashCtx);

}

Infamous goto bug in iOS implementation of TLS

• Dead code analysis would easily reveal this flaw!

• Or simply code style that insists you always use { } for branches

9

No check if mallocs succeeded!!
(easier to check syntactically)

void start_engine_control() {

 char* buf2 = malloc (2*SOME_CONSTANT);

 char* buf = malloc (SOME_CONSTANT);

 start_engine();

 memset(buf2, 0, SOME_CONSTANT);

 // initialise first half of buf2 to 0

 // main loop

 while (true) {

 get_readings(buf,buf2);

 perform_engine_control(buf,buf2);

 }

}

Spot the defects!
possible integer
overflow
(hard to check for
code analyser, but
for a constant is
may be doable)

10

Check you mallocs!

void start_engine_control() {

 ...

 char* buf = malloc (SOME_CONSTANT);

 if (buf == NULL) { // now what?!?!?

 exit(0); // or something more graceful??

 }

 ...

 start_engine();

 ...

 perform_engine_control(buf);

Typically, the place where malloc fails is the place to think about

what to do.

The alternative is not check the result of malloc here, and simply let
perform_engine_control segfault or let this function check for null

arguments, but there we have even less clue on what to do.

11

Spot the defect :-)

12

First Ariane V launch
integer overflow in conversion of 64 bit float to 16 bit int
https://www.youtube.com/watch?v=PK_yguLapgA

Limits of static analyses

Does

 if (i < 5) { c = 5; }

 if ((i < 0) || (i*i > 20)){ c = 6; }

initialise c?

Many analyses become hard – or undecidable - at some stage

Analysis tools can then:

• report that they “DON’T KNOW”

• give a (possible) false positive

• give a (possible) false negative

13

Example source code analysis tools

⚫ free tools for Java: CheckStyle, PMD, SpotBugs (formerly FindBugs)

⚫ for C(++) from Microsoft: PREfix, PREfast, FxCop

⚫ outdated, but free tools focusing on security

 ITS4 and Flawfinder (C, C++), RATS (also Perl, PHP)

⚫ commercial

Coverity (C/C++) , PolySpace (C/C++, Ada), SparkAda (Ada),

Klocwork, PVS-Studio, Fortify, IBM AppScan, VeraCode,

CheckMarx, SonarQube, Semmle, semgrep

Some tools focus on C/C++, others on web applications

Such tools can be useful, but… a fool with a tool is still a fool

14

easy & fun
to download
and try out!

PREfast & SAL

15

PREfast & SAL

• Developed by Microsoft as part of major push to improve

quality assurance in noughties

• PREfast is a lightweight static analysis tool for C(++)

– only finds bugs within a single procedure

• SAL (Standard Annotation Language) is a language for

annotating C(++) code and libraries

– SAL annotations improve the results of PREfast

• more checks

• more precise checks

• PREfast is included is some variants of Visual Studio

16

PREfast checks

• library function usage

– deprecated functions

• eg gets()

– correct use of functions

• eg does format string match parameter types?

• coding errors

• eg using = instead of == in an if-statement

• memory errors

– assuming that malloc returns non-zero

– going out of array bounds

17

PREfast example

 _Check_return_ void *malloc(size_t s);

 _Check_return_ means that caller must check the return

value of malloc

18

PREfast annotations for buffers

 void memset(char *p,

 int v,

 size_t len);

 void memcpy(char *dest,

 char *src,

 size_t count);

19

SAL annotations for buffer parameters

• _In_

• _Inout_

• _Out_

The function reads from the buffer. The caller

provides the buffer and initializes it.

The function both reads from and writes to buffer.

The caller provides the buffer and initializes it.

The function only writes to the buffer. The caller

must provide the buffer, and the function will

initialize it..

20

PREfast can use these annotations to check that

(unitialised) variables are not read before they are

written

SAL annotations for buffer sizes

specified with suffix of _In_ _Out_ _Inout_ _Ret_

⚫ cap_(size) the writeable size in elements

⚫ bytecap_(size) the writeable size in bytes

⚫ count_(size) bytecount_(size)

 the readable size in elements

 count and bytecount should be only be used for

inputs, ie. parameter declared as _In_

21

PREfast can use these annotations to check for buffer

overruns

SAL annotations for nullness of parameters

Possible (non)nullness is specified with prefix

⚫ opt_

 parameter may be null, and procedure will check for this

• no prefix means pointer may not be null

PREfast can use these annotations to spot potential null

deferences at compile-time

• So references are treated as non-null by default

22

PREfast example

 void* memset(_Out_cap_(len) char *p,

 int v,

 size_t len);

 _Out_cap_(len) specifies that

• memset will only write the memory at p

• It will write len bytes

23

PREfast example

 void memcpy(_Out_cap_(count) char* dest,

 _In_count_(count) char* src,

 size_t count);

So memcopy will read src the and write to dest

24

Example annotation & analysis

void work() {

 int elements[200];

 wrap(elements, 200);

}

int *wrap(int *buf, int len) {

 int *buf2 = buf;

 int len2 = len;

 zero(buf2, len2);

 return buf;

}

void zero(int *buf,

 int len){

 int i;

 for(i = 0; i <= len; i++) buf[i] = 0;

}

25

Example annotation & analysis

void work() {

 int elements[200];

 wrap(elements, 200);

}

_Ret_cap_(len) int *wrap(

 _Out_cap_(len) int *buf,

 int len) {

 int *buf2 = buf;

 int len2 = len;

 zero(buf2, len2);

 return buf;

}

void zero(_Out_cap_(len) int *buf,

 int len){

 int i;

 for(i = 0; i <= len; i++) buf[i] = 0;

}

PREfast builds constraints, based on

annotations and on the program logic

(eg. guards of if/while statements)

and checks contracts

1. constraint

 len = length(buf)

2. Check contract (precondition) of zero

3. Check contract (postcondition) of wrap

4. constraints

 len = length(buf)

 i ≤ len

5. Check

 0<=i < length(buf)

26

SAL pre- and postconditions

#include </prefast/SourceAnnotations.h>

 [SA_Post(MustCheck=SA_Yes)] double* CalcSquareRoot

 ([SA_Pre(Null=SA_No)] double* source,

 unsigned int size)

Here [SA_Post (MustCheck=SA_Yes)]

 requires caller to check the return value of CalcSquareRoot

 (this is an alternative syntax for _Check_return_)

and [SA_Pre (Null=SA_No)]

 requires caller to pass non-null parameter source

27

Tainting annotations in pre/postconditions

SAL can specify pre- and postconditions to express if inputs

or outputs of a methods maybe tainted

• i.e. untrusted, potentially malicious user input,

• [SA_Pre(Tainted=SA_Yes)]

 This argument is tainted and cannot be trusted without validation

• [SA_Pre(Tainted=SA_No)]

 This argument is not tainted and can be trusted

• [SA_Post(Tainted=SA_No)]

 As above, but as postcondition for the result

28

Warning: changing SAL syntax

• SAL syntax has changed a few times changing

 For the exercise, stick to the syntax described in these

slides & on the webpage for the exercise.

• PREfast behaviour can be a bit surprising when you use

count instead of cap or when you use bytecap instead of

cap

29

Benefits of annotations

• Annotations express design intent

for human reader & for tools

• Adding annotations you can find more errors

• Annotations can improve precision

ie reduce false negatives and false positives

 because tool does not have to guess design intent

• Annotations improve scalability

annotations isolate functions so they can be analysed one at a
time:

 it allows intra-procedural (local) analysis

 instead of inter-procedural (global) analysis

30

Drawback of annotations

• The effort of having to write them...

Who's going to annotate the millions of lines of (existing) code?

• Practical issue of motivating programmers to do this

• Microsoft’s approach

– requiring annotation on checking in new code

• rejecting any code that has char* without _count()

– incremental approach, in two ways:

1. beginning with few core annotations

2. checking them at every compile, not adding them in the
end

– build tools to infer annotations, eg SALinfer

• unfortunately, not available outside Microsoft

31

Static analysis in the workplace

Static analysis is not for free:

– Commercial tools cost money

– Even free open source tools cost time & effort to learn to

use

Should security analysists use these tools or should the

developers?

32

Criteria for success

• Acceptable level of false positives

– acceptable level of false negatives also interesting, but less

important

• Not too many warnings

– this turns off potential users

• Good error reporting

– context & trace of error

• Bugs should be easy to fix

• You should be able to teach the tool

– to suppress a false positive, once and for all

– add design intent via assertions

33

Limitations of static analysis

Big challenges for static analysis are

1. The heap (aka dynamic memory) poses a major challenge

for static analysis

• The heap is a very dynamic structure evolving at runtime;

what is a good abstraction at compile-time?

2. Concurrency

Many static analysis will disregard the heap completely &

ignore the possibility for concurrency

– Note that all the examples in these slides did

– This is then a source of false positives and/or false negatives

Some coding standards for safety-critical code, eg MISRA-C,

disallow use of the heap (aka dynamic memory)

34

	Slide 1: Software Security Static Analysis with PREfast & SAL
	Slide 2: Finding & fixing memory corruption
	Slide 3: Static analysis aka source code analysis aka SAST
	Slide 4: Why static analysis? (1)
	Slide 5: False positives & false negatives
	Slide 6: Very simple static analyses
	Slide 7: More interesting static analyses
	Slide 8: Spot the defect!
	Slide 9: Spot the security flaw!
	Slide 10: Spot the defects!
	Slide 11: Check you mallocs!
	Slide 12: Spot the defect :-)
	Slide 13: Limits of static analyses
	Slide 14: Example source code analysis tools
	Slide 15: PREfast & SAL
	Slide 16: PREfast & SAL
	Slide 17: PREfast checks
	Slide 18: PREfast example
	Slide 19: PREfast annotations for buffers
	Slide 20: SAL annotations for buffer parameters
	Slide 21: SAL annotations for buffer sizes
	Slide 22: SAL annotations for nullness of parameters
	Slide 23: PREfast example
	Slide 24: PREfast example
	Slide 25: Example annotation & analysis
	Slide 26: Example annotation & analysis
	Slide 27: SAL pre- and postconditions
	Slide 28: Tainting annotations in pre/postconditions
	Slide 29: Warning: changing SAL syntax
	Slide 30: Benefits of annotations
	Slide 31: Drawback of annotations
	Slide 32: Static analysis in the workplace
	Slide 33: Criteria for success
	Slide 34: Limitations of static analysis

