
“Platform”-level defences

1

2

Platform-level defences

• Defenses the “platform” – ie compiler, hardware, OS, … –

can take, without the programmer having to know

• Some defenses need OS & hardware support

• Some defenses cause overhead

– If this overhead is unacceptable in production code,

we can still use it in testing phase

– Attitudes about how much overhead is acceptable have been

changing over time

• Some defenses may break binary compatibility

– if the compiler adds extra book-keeping & checks,

all libraries may need to be re-compiled with that compiler

3

Platform-level defenses

1. Stack canaries

2. Non-executable memory (NX, WX)

3. Address space layout randomization (ASLR)

4. Various forms of integrity checks on control flow

More advanced defenses

1. More randomisation: eg. pointer & memory encryption

2. More memory safety checks:

eg. checks on bounds (spatial) or on allocation (temporal)

3. Execution-aware memory protection

now standard

on many

platforms

4

1. Stack canaries

• Stack canary aka stack cookie is written on the stack in front of

the return address and checked when function returns

• A careless stack overflow will overwrite the canary,

which can then be detected

• first introduced in as StackGuard in gcc

• only very small runtime overhead

5

Stack canaries

Stack without canary Stack with canary

x

return address

buf[4..7]

buf[0..3]

x

return address

buf[4..7]

buf[0..3]

canary value

6

Further improvements

• More variation in canary values: eg not a fixed values hardcoded

in binary but a random values chosen for each execution

• Better still, XOR the return address into the canary value

• Include a null byte in the canary value, because C string

functions cannot write nulls inside strings

A careful attacker can still defeat canaries, by

• overwriting the canary with the correct value

• corrupting a pointer to point to the return address

to then change the return address without killing the canary

eg changing to
return

buf[4..7]

buf[0..3]

canary value
char* ptr

return

buf[4..7]

buf[0..3]

canary value
char* ptr

7

Aside: corrupting pointers

Overwriting pointers is especially interesting because subsequent

uses of that pointer then read/write data in another place which

attacker can choose.

100 char* ptr;

101 char[8] buf;

 ...

200 fgets(buf, 12, stdin); // overflow corrupts ptr,

 // e.g. to point to the position of return address

 ...

210 fgets(ptr, 100, stdin);

 // corrupts any location chosen by the

 // attacker when overflowing buf in line 200

8

Further improvements

• Re-order elements on the stack to reduce the potential impact of

overruns

• swapping parameters buf and fp on stack changes whether

overrunning buf can corrupt fp

• which is especially dangerous if fp is a function pointer

• hence it is safer to allocated array buffers ‘above’ all other

local variables

• A separate shadow stack

• with copies of return addresses, used to check for corrupted

return addresses

• Of course, the attacker should not be able to corrupt the

shadow stack

9

Windows 2003 Stack Protection

Nice example of the ways in which things can go wrong...

• /GS command line option in Visual Studio add stack canaries

• When canary is corrupted, control is transferred to an exception

handler

• Exception handler information is stored ...

 on the stack!

• Attacker can corrupt the exception handler info on the stack, in

the process corrupt the canaries, and then let Stack Protection

transfer control to a malicious exception handler

 [http://www.securityfocus.com/bid/8522/info]

• Countermeasure: only allow transfer of control to registered

exception handlers

10

2. ASLR (Address Space Layout Randomisation)

• Attacker needs detailed info about memory layout

– eg to jump to specific piece of code

– or to corrupt a pointer at known position on the stack

• Attacks become harder if we randomise the memory layout every
time we start a program

• ie. change the offset of the heap, stack, etc, in memory by
some random value

• Attackers can still analyse memory layout on their own laptop,
but will have to determine the offsets used on the victim’s
machine to carry out an attack

• NB security by obscurity, despite its bad reputation, is a really
great defense mechanism to annoy attackers!

• Once the offset leaks, we’re back to square one…

11

3. Non-eXecutable memory (NX, aka WX, W^X, DEP)

Distinguish

• X: executable memory (for storing code)

• W: writeable, non-executable memory (for storing data)

and let processor refuse to execute non-executable code

Attackers can then no longer jump to their own attack code,
as any input provide as attack code will be non-executable

aka DEP (Data Execution Prevention).

Intel calls it eXecute-Disable (XD)

AMD calls it Enhanced Virus Protection

Limitation:

this technique does not work for JIT (Just In Time) compilation,
where e.g. JavaScript is compiled to machine code at run time.

12

Defeating NX: return-to-libc attacks

With NX, code injection attacks no longer possible,

but code reuse attacks still are...

• Attackers can no longer corrupt code or insert their own code,
but can still corrupt code pointers

• Called control-flow hijack in SoK paper

So instead of jumping to own attack code

corrupt return address to jump to existing code

esp. library code in libc

libc is a rich library that offers lots of functionality,
eg. system(), exec(),

which provides attackers with all they need...

13

(ROP)

Next stage in evolution of attacks, as people removed or protected
dangerous libc calls such as system()

Instead of using a library call, attackers can

• look for gadgets, small snippets of code which end with a return,
in the existing code base

...; ins1 ; ins2 ; ins3 ; ret

• chain these gadgets together as subroutines to form a program
that does what they want

This turns out to be doable

• Most libraries contain enough gadgets to provide a Turing
complete programming language

• ROP compilers can then translate arbitrary code to a sequence
of these gadgets

14

More advanced defences

[See SoK Eternal War in Memory paper]

• Attacks can target code or data

• Attacks can compromise integrity or confidentiality

Memory corruption attacks

16

code data

code

pointers

The biggest disasters happen here

Types of (building blocks for) attacks

1. Code corruption attack

Overwrite the original program code in memory

 Impossible with WX

2. Control-flow hijack attack

Overwrite a code pointer, eg return address, jump address,
function pointer, or pointer in vtable of C++ object

3. Data-only attack
Overwrite some data, eg bool isAdmin;

4. Information leak

Only reading some data; e.g. Heartbleed attack on TLS

17

Control flow hijack via code pointers

• A compiler translates function calls in source code to
call <address> or JSR <address> in machine code

where <address> is the location of the code for the function.

• For a function call f(...) in C a static address (or offset) of the

code for f may be known at compile time.

If compiler can hard-code this static address in the binary,

WX can prevent attackers from corrupting this address

• For a virtual function call o.m(...) in C++ the address of the

code for m typically has to be determined at runtime,

by inspecting the virtual function table (vtable)

WX does not prevent attackers from corrupting code pointers
in these tables

18

Classification of defences [SoK paper Eternal War in Memory]

• Probabilistic methods

Basic idea: add randomness to make attacks harder

– in location where certain data is located (eg ASLR),

or in the way data is represented in memory (eg pointer

encryption)

• Memory Safety

Basic idea: do additional bookkeeping & add runtime checks to

prevent some illegal memory access

• Control-Flow Hijack Defenses

Basic idea: do additional bookkeeping & add runtime check to

prevent strange control flow

19

More randomness: Pointer Encryption (PointGuard)

• Many buffer overflow attacks involve corrupting pointers,

pointers to data or code pointers

• To complicate this: store pointers encrypted in main memory,

unencrypted in registers

– simple & fast encryption scheme: eg. XOR with a fixed value,

randomly chosen when a process starts

• Attacker can still corrupt encrypted pointers in memory,

but these will not decrypt to predictable values

– This uses encryption to ensure integrity.

Normally NOT a good idea, but here it works.

• More extreme variant: Data Space Randomisation (DSR)

– store not just pointers encrypted in main memory,

but store all data encrypted in memory

– Some AMD chips support this under name SME (Secure

Memory Encryption) that uses AES

20

Recent trends on pointer encryption/authentication

• Pointer Authentication on Qualcomm ARMv8.3

if not all 64 bits are needed for pointers, remaining bits can be

used for a PAC (Pointer Authentication Code)

– 3 – 24 bits PACs using fast QARMA cipher

• Joan Daemen’s PhD student Yanis Belkheyar in our group works

on lightweight ciphers suitable for pointer encryption for

Intel’s Cryptographic Capability Computing (C3)

– Lightweight can be lightweight in 1) power consumption,

2) surface area of hardware implementation, or 3) time.

For pointer encryption/authentication, time (aka latency) is crucial.

21

More memory safety

Additional book-keeping of meta-data

& extra runtime checks to prevent illegal memory access

Different possibilities

• add information to pointer about size of memory chunks it points

to (fat pointers)

• add information to memory chunks about their size (Spatial

safety with object bounds)

• …

ptr

22

Fat pointers

The compiler

• records size information for all pointers

• adds runtime checks for pointer arithmetic & array indexing

A pointer

A fat pointer

Downsides

• Considerable execution time overhead

• Not binary compatible – ie all code needs to be compiled to add

this book-keeping for all pointers

s o m e d a t a

p size

p

23

More memory safety

Additional book keeping of meta-data

& extra runtime checks to prevent illegal memory access

Different possibilities

• add information to pointer about size of memory chunks it points

to (fat pointers)

• add information to memory chunks about their size (Spatial

safety with object bounds)

• keep a shadow administration of this meta-data, separate from

the pointers & the existing memory (SoftBounds)

• keep a shadow administration of which memory cells have been

allocated (Valgrind, Memcheck, AddressSanitizer or ASan)

– to also spot temporal bugs, ie. malloc/free bugs

ptr

24

Object-based temporal safety (Valgrind, Memcheck, ASan)

Shadow admin

of allocated memory

to keep track of which memory is allocated, to generate runtime

error when code tries to read/write unallocated memory

• Can also catch spatial bugs, ie. small buffer overruns, by keeping

empty space between allocated chunks (unless overrun is huge)

– small overrun will end up in this unallocated space

• Cannot spot illegal access via a stale pointer if the data chunk it

points to has been re-allocated

• Eg the last bug, line 3004, on slide 19

s o m e d a t a

o l d j u n k X

Y Z h e l l o \0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

25

Guard pages to improve memory safety

Allocate chunks with the end at a page boundary with a

non-readable, non-writeable page between them

Buffer overwrite or overread will cause a memory fault.

Small execution overhead, but big memory overhead

s o m e d a t a

h e l l o \0

p

q

26

Control Flow Integrity (CFI)

Extra bookkeeping & checks to spot unexpected control flow

• Dynamic return integrity

Stack canaries, or shadow stack that keeps copies of all return

addresses, providing extra check against corruption of return

addresses

• Static control flow integrity

Idea: determine the control flow graph (cfg) and monitor jumps

in the control flow to spot deviant behavior

If f() never calls g(),

because g()does not even occur in the code of f(),

then call from f() to g() is suspicious,

as is a return from g() to f()

Interrupting execution when this happens prevents (some)

attacks.

This can detect some Return-to-libc and ROP attacks

27

Static control flow integrity: example code & CFG

Before and/or after every control transfer (function call or return)

we could check if it is legal – ie. allowed by the CFG

• Some weird return jumps still allowed; eg if we call h() from g(),

and return to f() would be allowed by the static cfg

• Additional dynamic return integrity check can narrow this down

to actual call site – using recorded call site on shadow stack

void f() {

 ... ; g();

 ... ; g();

 ... ; h();

 ...

}

void g(){ ..h();}

void h(){ ... }

call g
call h

return

call g

call h

g()

h()

f()

return

28

Downsides of static control flow integrity checks

• Requires a whole program analysis

• Use of function pointers in C or virtual functions in C++ (that both

result in so-called indirect control transfers) complicate

compile-time analysis of the cfg: we’d need

• a points-to analysis to determine where such code pointers

can point to

eg in C++, if Animal.eat() can resolve to

Cat.eat() or Dog.eat(), so both these addresses

are valid targets for transferring control

• or: simply allow transfer to any function entry point

Microsoft Control Flow Guard (CFG) performs such checks

29

Typical input problem

Input problems always follow the same pattern:

1)attacker supplies some malicious input

2)application 'processes' the input

a)by itself and/or

b)using external tools (OS, file system, SQL database, …)

3)processing 'goes of the rails'

which unintentionally exposes dangerous functionality

to the attacker

New(er) features of modern OS

Stack canaries, ASLR, and NX are standard, except on very cheap

devices (eg in IoT).

Some fancier features are slowly becoming used:

• Pointer encryption in iOS (2018)

• Hardware-enforced Stack Protection in Windows 10 (2020)

• with a shadow stack,

using Intel Control-flow Enforcement Technology (CET)

https://techcommunity.microsoft.com/t5/windows-kernel-internals/understanding-hardware-

enforced-stack-protection/ba-p/1247815

30

The big & tricky design question

Is the extra overhead of some protection

mechanism worth the extra protection?

31

Exam questions: you should be able to

• Explain how simple buffer overflows work & what root causes are

• Spot a simple buffer overflow, memory-allocation problem,

format string attack, or integer overflow in some C code

• Explain how countermeasures - such as stack canaries, ASLR,

non-executable memory, CFI, bounds checkers, pointer

encryption - work

• Explain why they might not always work

32

Evolution of CFI at Microsoft (not exam material)

If you’re curious to know how usage of CFI in Windows has evolved

(up to 2018), watch the talk by Joe Bialek at OffensiveCON 18

The Evolution of CFI Attacks and Defenses

https://www.youtube.com/watch?v=oOqpl-2rMTw

33

Recent developments at Apple (not exam material)

Apple has started to leave runtime checks for bounds safety in

production code, to prevent (some) spatial bugs, but not temporal

bugs.

See Yeoaul Na’s keynote talk at LLVM’23

“-fbounds-safety”: Enforcing bounds safety for production C code

 https://www.youtube.com/watch?v=RK9bfrsMdAM

34

	Slide 1: “Platform”-level defences
	Slide 2
	Slide 3: Platform-level defences
	Slide 4: Platform-level defenses
	Slide 5: 1. Stack canaries
	Slide 6: Stack canaries
	Slide 7: Further improvements
	Slide 8: Aside: corrupting pointers
	Slide 9: Further improvements
	Slide 10: Windows 2003 Stack Protection
	Slide 11: 2. ASLR (Address Space Layout Randomisation)
	Slide 12: 3. Non-eXecutable memory (NX, aka WX, W^X, DEP)
	Slide 13: Defeating NX: return-to-libc attacks
	Slide 14: (ROP)
	Slide 15: More advanced defences [See SoK Eternal War in Memory paper]
	Slide 16: Memory corruption attacks
	Slide 17: Types of (building blocks for) attacks
	Slide 18: Control flow hijack via code pointers
	Slide 19: Classification of defences [SoK paper Eternal War in Memory]
	Slide 20: More randomness: Pointer Encryption (PointGuard)
	Slide 21: Recent trends on pointer encryption/authentication
	Slide 22: More memory safety
	Slide 23: Fat pointers
	Slide 24: More memory safety
	Slide 25: Object-based temporal safety (Valgrind, Memcheck, ASan)
	Slide 26: Guard pages to improve memory safety
	Slide 27: Control Flow Integrity (CFI)
	Slide 28: Static control flow integrity: example code & CFG
	Slide 29: Downsides of static control flow integrity checks
	Slide 30: New(er) features of modern OS
	Slide 31: The big & tricky design question
	Slide 32: Exam questions: you should be able to
	Slide 33: Evolution of CFI at Microsoft (not exam material)
	Slide 34: Recent developments at Apple (not exam material)

