
Fuzzing project

• Steer clear of FFmpeg

• Look for evidence of fuzzing in the code repo

1

Fuzzing - last week

1. Basic fuzzing with random/long inputs

2. ‘Dumb’ mutational fuzzing

example: OCPP

3. Generational fuzzing aka grammar-based fuzzing

example: GSM

4. Whitebox fuzzing with SAGE

using symbolic execution

Still left for today

1. Code-coverage guided evolutionary fuzzing with afl

aka grey box fuzzing or ‘smart’ mutational fuzzing

2

Coverage-guided evolutionary fuzzing

with afl

(American Fuzzy Lop)

3

Evolutionary Fuzzing

Use evolution:

try random input mutations, and

observe the effect on some form of coverage, and

let only the interesting mutations evolve further

where “interesting” = resulting in ‘new’ execution paths

Aka coverage-guided evolutionary greybox fuzzing,

but terminology is a bit messy/non-standard.

4

alf: observing jumps to find interesting inputs/input changes

input

code

5

line instruction

1 JMP 6

2 ..

3 ..

4 ..

5 JZ (Jump If Zero) 7

6 ..

7 arraycopy (dst, input[i..j]);

8

9 ..

10 JCXZ 2

11 ..

12 ..

13 println (part of input);

14 ..

15 JNE 103131

16 ..

17 ..

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

afl bitmap shared_mem

2

3

1

afl [http://lcamtuf.coredump.cx/afl]

• Code instrumented to observe execution paths:

– if source code is available, by using modified compiler

– if source code is not available, by running code in an emulator

• Code coverage represented as a 64KB bitmap:

each control flow jumps is mapped to a change in this bitmap

– different executions could result in same bitmap, but chance is small

• Mutation strategies include: bit flips, incrementing/decrementing

integers, using pre-defined interesting values (eg. 0, -1, MAX_INT,....) or

user-supplied dictionary, deleting/combining/zeroing input blocks, ...

• The fuzzer forks the SUT to speed up the fuzzing

• Big win: no need to specify the input format, but still good coverage

6

afl’s instrumentation of compiled code

Code is injected at every branch point in the code

cur_location = <SOME_RANDOM_NUMBER_FOR_THIS_CODE_BLOCK>;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

 where shared_mem is a 64 KB memory region

Intuition: for every jump from L1 to L2 a different byte in shared_mem

is changed (increased).

Which byte is determined by random values chosen at compile

time inserted at source and destination of every jump

7

8

9

afl statistics

• total execs

• total paths

• (unique) crashes

• (unique) hangs

• cycles

10

Cool example: learning the JPG file format

Fuzzing a program that expects a JPG as input, starting with 'hello

world' as initial test input, afl can learn to produce legal JPG files

along the way producing/discovering error messages such as

– Not a JPEG file: starts with 0x68 0x65

– Not a JPEG file: starts with 0xff 0x65

– Premature end of JPEG file

– Invalid JPEG file structure: two SOI markers

– Quantization table 0x0e was not defined

and then JPGs like

 [Source http://lcamtuf.blogspot.nl/2014/11/pulling-jpegs-out-of-thin-air.html]

11

Other strategies in evolutionary fuzzing

Instead of maximizing path/code coverage, we can also let inputs

evolve to maximize some other variable or property

• Code may need to instrumented to let fuzzer observe that property

Eg the x-coordinate of Super Mario

[Aschermann et al., IJON: Exploring Deep State Spaces via Fuzzing, IEEE S&P 2020]

https://www.youtube.com/watch?v=3PyhXlHDkNI
12

Conclusions

• Fuzzing is great technique to find (a certain class of) security flaws!

• If you ever write or use C(++) code, you should fuzz it.

• Challenge: getting good coverage fuzzing without too much effort

Successful approaches include

– White-box fuzzing based on symbolic execution with SAGE

– Evolutionary fuzzing aka coverage guided greybox fuzzing with afl

• Does fuzzing makes sense for code in other programming languages?

Yes, even if the kind of bugs found may have lower security impact.

• A more ambitious generation of tools not only tries to find security flaws,

but also to then build exploits, eg. angr

To read (see links on the course page)

• Section 1 of technical white paper for afl

• Patrice Godefroid, Fuzzing: Hack, Art, and Science CACM 2020

14

	Slide 1: Fuzzing project
	Slide 2: Fuzzing - last week
	Slide 3: Coverage-guided evolutionary fuzzing with afl (American Fuzzy Lop)
	Slide 4: Evolutionary Fuzzing
	Slide 5: alf: observing jumps to find interesting inputs/input changes
	Slide 6: afl [http://lcamtuf.coredump.cx/afl]
	Slide 7: afl’s instrumentation of compiled code
	Slide 8
	Slide 9
	Slide 10: afl statistics
	Slide 11: Cool example: learning the JPG file format
	Slide 12: Other strategies in evolutionary fuzzing
	Slide 14: Conclusions

