Fuzzing project
« Steer clear of FFmpeg

 Look for evidence of fuzzing in the code repo

Fuzzing - last week

Basic fuzzing with random/long inputs

‘Dumb’ mutational fuzzing

example: OCPP

Generational fuzzing aka grammar-based fuzzing

example: GSM
Whitebox fuzzing with SAGE

using symbolic execution

Still left for today

Code-coverage guided evolutionary fuzzing with afl

aka grey box fuzzing or ‘smart’ mutational fuzzing

Coverage-guided evolutionary fuzzing

with afl
(American Fuzzy Lop)

Evolutionary Fuzzing
Use evolution:
try random input mutations, and
observe the effect on some form of coverage, and
let only the interesting mutations evolve further

where “interesting” = resulting in ‘new’ execution paths

Aka coverage-guided evolutionary greybox fuzzing,

but terminology is a bit messy/non-standard.

alf: observing jumps to find interesting inputs/input changes

input
mw afl bitmap shared mem

code | yypg —

2 _ |1]/2/3]4]5]6]7[8/9]10]11 12

3 1 bt

4 2

5 JZ (Jump If Zero) 7 3

6 . ~

7 arraycopy (dst, inputfi..jl); ° b3

8 6

9 . i

10 JCXZ2 8

11 9

2 . 10 M

13 printin (part of input); 11

14 12

13

15 JNE 103131

—

o
H
N

|
-
J1

a f l [http://lIcamtuf.coredump.cx/afl]

Code instrumented to observe execution paths:
— if source code is available, by using modified compiler
— if source code is not available, by running code in an emulator

Code coverage represented as a 64KB bitmap:
each control flow jumps is mapped to a change in this bitmap

— different executions could result in same bitmap, but chance is small

Mutation strategies include: bit flips, incrementing/decrementing
integers, using pre-defined interesting values (eg. 0, -1, MAX_INT,....) or
user-supplied dictionary, deleting/combining/zeroing input blocks, ...

The fuzzer forks the SUT to speed up the fuzzing

Big win: no need to specify the input format, but still good coverage

afl’s instrumentation of compiled code

Code is injected at every branch point in the code
cur location = <SOME RANDOM NUMBER FOR THIS CODE_BLOCK>;
shared mem[cur location * prev location]++;

prev_location = cur location >> 1;

where shared mem is a 64 KB memory region

Intuition: for every jump from L, to L, a different byte in shared mem
is changed (increased).

Which byte is determined by random values chosen at compile
time inserted at source and destination of every jump

american fuzzy lop 2.52b (dnsmasq)

0 days, 20 hrs, 31 min, 27 sec
0 days, 0 hrs, 48 min, 28 sec
0 days, 2 hrs, 22 min, 39 sec
none seen yet

3138*% (92.05%) 0.34% / 4.51%
0 (0.00%) 2.92 bits/tuple

user extras (insert) 686 (20.12%)
509k/1.38M (36.79%) 1022 (29.98%)
29.4M 363 (12 unique)
464.9/sec 54 (18 unique)

151/1.22M, 104/1.22M, 47/1.22M 17
0/152k, 2/61.4k, 4/59.8k 2326
133/3.47M, 0/1.04M, 0/286k 7
32/264k, 29/1.62M, 10/2.55M 1887
103/2.43M, 48/5.49M, 176/1.58M n/a
1060/6.14M, 0/0 100.00%
40.91%/56.3k, 58.16%

~C 150%

+++ Testing aborted by user +++
[+] We're done here. Have a nice day!

american fuzzy lop 2.52b (dnsmasq)

0 days, 20 hrs, 31 min, 27 sec
0 days, 0 hrs, 48 min, 28 sec
0 days, 2 hrs, 22 min, 39 sec
none seen yet

3138*% (92.05%) 0.34% / 4.51%
0 (0.00%) 2.92 bits/tuple

user extras (insert) 686 (20.12%)
509k/1.38M (36.79%) 1022 (29.98%)
29.4M 363 (12 unique)
464.9/sec 54 (18 unique)

151/1.22M, 104/1.22M, 47/1.22M 17
0/152k, 2/61.4k, 4/59.8k 2326
133/3.47M, 0/1.04M, 0/286k 7
32/264k, 29/1.62M, 10/2.55M 1887
103/2.43M, 48/5.49M, 176/1.58M n/a
1060/6.14M, 0/0 100.00%
40.91%/56.3k, 58.16%

~C 150%

+++ Testing aborted by user +++
[+] We're done here. Have a nice day!

total execs

total paths
(unique) crashes
(unique) hangs

cycles

afl statistics

10

Cool example: learning the JPG file format

Fuzzing a program that expects a JPG as input, starting with 'hello
world' as initial test input, afl can learn to produce legal JPG files

along the way producing/discovering error messages such as
— Not a JPEG file: starts with 0x68 0x65

— Not a JPEG file: starts with Oxff 0x65

— Premature end of JPEG file

— Invalid JPEG file structure: two SOI markers

— Quantization table 0x0e was not defined

and then JPGs like LLEE(IHIIJ!I!!@!MJII\;I@! R
LJLJ@EI!HE]I_H]@ L@M_lygumuuq
JDIIIIE@!IJTHMLIIMIH u-u-rﬁ
muBLuuuuuw
J\JU_UWLDQ
I IESE =NV

[] Efl@uuﬂﬂg<
I EIWEEMHDL:M
oo i] JUluumu@Equ

[Source http:/llcamtuf.blogspot.nl/2014/11/pulling-jpegs-out-of-thin-air.html]

T‘
L,

=i |

[
H’i@QD
[EDE
lmll\
EE

a@umm

e

%D

l

o

1

m

L]
M!@
m
i]
EWHD

11

Other strategies in evolutionary fuzzing

Instead of maximizing path/code coverage, we can also let inputs
evolve to maximize some other variable or property

« Code may need to instrumented to let fuzzer observe that property

Eg the x-coordinate of Super Mario

[Aschermann et al., /IJON: Exploring Deep State Spaces via Fuzzing, |EEE S&P 2020]

12
https://www.youtube.com/watch?v=3PyhXIHDkNI

Conclusions

* Fuzzing is great technique to find (a certain class of) security flaws!

« |fyou ever write or use C(++) code, you should fuzz it.

« Challenge: getting good coverage fuzzing without too much effort
Successful approaches include

— White-box fuzzing based on symbolic execution with SAGE

— Evolutionary fuzzing aka coverage guided greybox fuzzing with afl
 Does fuzzing makes sense for code in other programming languages?

Yes, even if the kind of bugs found may have lower security impact.

« A more ambitious generation of tools not only tries to find security flaws,
but also to then build exploits, eg. angr

To read (see links on the course page)
« Section 1 of technical white paper for afl

Patrice Godefroid, Fuzzing: Hack, Art, and Science CACM 2020

14

	Slide 1: Fuzzing project
	Slide 2: Fuzzing - last week
	Slide 3: Coverage-guided evolutionary fuzzing with afl (American Fuzzy Lop)
	Slide 4: Evolutionary Fuzzing
	Slide 5: alf: observing jumps to find interesting inputs/input changes
	Slide 6: afl [http://lcamtuf.coredump.cx/afl]
	Slide 7: afl’s instrumentation of compiled code
	Slide 8
	Slide 9
	Slide 10: afl statistics
	Slide 11: Cool example: learning the JPG file format
	Slide 12: Other strategies in evolutionary fuzzing
	Slide 14: Conclusions

