
Software Security

Language-based Security:

‘Safe’ programming languages
(continued)

Erik Poll

1

Safe(r) programming languages

Last week

• memory-safety 2 kinds: to ensure only ‘legal’ memory access,

 or also ensure only access to initialized memory

• type-safety: ensuring a different kind of ‘legal’ memory access

Today

• safe(r) integer arithmetic

• type-safety continued: type confusion

• visibility / encapsulation

• more expressive type systems

• thread safety, aliasing & immutability

• compartmentalisation

2

Safe arithmetic

What happens if i=i+1; overflows?

What would be unsafe or safe(r) approaches?

1. Unsafest approach : leaving this as undefined behavior

– eg C and C++

2. Safer approach : specifying how over/underflow behaves

– eg based on 32 or 64 bit two-complements behaviour

– eg Java and C#

3. Safer still : integer overflow results in an exception

– eg checked mode in C#

4. Safest: have infinite precision integers, so overflow never happens

– Python and functional programming languages like Haskell have

infinite precision integers.

– There have been experiments with infinite precision reals, but no mainstream

programming languages provide these as far as I know.

3

Breaking type safety?

Type safety is an extremely fragile property:

one tiny flaw brings the whole type system crashing down

Data values and objects are just blobs of memory. If we can create type

confusion, by having two references with different types pointing the

same blob of memory, then all type guarantees are gone.

• Example: type confusion attack on Java in Netscape 3.0:

 public class A[]{ ... }

 Netscape's Java execution engine confused this type A[]

with the type array of A

Root cause: [and] should not be allowed in class names

So this is an input validation problem!

4

int x

char* y

Type confusion attacks

public class A{

 public Object x;

 ...

}

What if we could compile B against A

but we run it against A?

We can do pointer arithmetic again!

If Java Virtual Machine would allow

such so-called binary incompatible

classes to be loaded, the whole

type system would break.

public class A{

 public int x;

 ...

}

public class B{

 void setX(A a) {

 a.x = 12;

 }

}

5

How rich aka expressive

can we make type systems?

6

Ongoing evolution to richer types: non-null vs nullable

Many ways to enrich type systems further, eg

• Distinguish non-null & possibly-null (aka nullable) types

 public @NonNull String hello = "hello";

• to improve efficiency

• to prevent null pointer bugs or detect (some/all?) of them

earlier, at compile time

• Support for this has become mainstream:

– C# supports nullable types written as A? or Nullable<A>

– In Java you can use type annotations @Nullable and @NonNull

– Scala, Rust, Kotlin, Swift, and Ceylon have non-null vs nullable aka

option(al) types

• Typically languages then take the approach that references are

non-null by default (as PREfast did)

7

Ongoing evolution to richer type systems:

aliasing & information flow

• Alias control

restrict possible interferences between modules due to aliasing.

– More on the risk of aliasing later this lecture

• Information flow

controlling on the way tainted information flows through an

implementation.

– More on type systems for information flow in later lectures.

8

Other language-based (type) guarantees

• visibility: public, private, etc

– eg private fields not accessible from outside a class

• immutability

– of primitive values (ie constants)

• in Java : final int i = 5;

• in C(++) : const int BUF_SIZE = 128;

 Beware: meaning of const is confusing for C(++) pointers & objects!

– of objects

• In Java, for example String objects are immutable

Scala, Rust, Ceylon, and Kotlin provide a more systematic distinction

between mutable and immutable data to promote the use of immutable

data structures

In functional programming languages data structures are always

immutable.

9

Thread-safety

&

Aliasing

10

Problems with threads (ie. lack of thread safety)

• Two concurrent execution threads both execute the statement

 x = x+1;

 where x initially has the value 0.

 What is the value of x in the end?

 Answer: x can have value 2 or 1

 In some languages (eg. Java) x can have any value

• The root cause of the problem is a data race:
x = x+1 is not an atomic operation, but happens in two steps -

reading x and assigning it the new value - which may be

interleaved in unexpected ways

• Why can this lead to security problems?

Think of internet banking, and running two simultaneous sessions

with the same bank account… Do try this at home! ☺

11

Weird multi-threading behaviour in Java
class A {

 private int i ;

 A() { i = 5 ;}

 int geti() { return i; }

 }

Execution of thread 1 takes in 3 steps

1. allocate new object m

2. m.i = 5;

3. x = m;

12

the compiler or VM is allowed to swap the order of these

 statements, because they don't affect each other

Hence: x.geti() in thread 2

can return 0 instead of 5

Can geti() ever return

something else than 5?

Yes!

Thread 1, initialising x

 static A x = new A();

Thread 2, accessing x

 j = x.geti();

You'd think that here x.geti() returns 5 or

throws an exception, depending on

whether thread 1 has initialised x

Weird multi-threading behaviour in Java

class A {

 private final int i ;

 A() { i = 5 ;}

 int geti() { return i;}

 }

13

Now geti() always return 5.

Declaring a private field as final fixes this particular problem

• this is a totally ad-hoc fix; the JVM spec includes some ad-hoc

restrictions on the initialisation of final fields

• A revision of the Java Memory Model specifies how compilers & VM (incl.

underlying hardware) can deal with concurrency, in 2004.

• The API implementation of String was only fixed in Java 2 (aka 1.5)

Data races and thread-safety

• A program contains a data race if two execution threads

simultaneously access the same variable and at least one of these

accesses is a write

NB data races are highly non-deterministic, and a pain to debug!

• thread-safety = the behaviour of a program consisting of several

threads can be understood as an interleaving of those threads

• In Java, the semantics of a program with data races is effectively

undefined, i.e. only programs without data races are thread-safe

Moral of the story:

Even purportedly “safe” programming languages can have very
weird behaviour in presence of concurrency

• The programming language Rust aims to guarantee the absence

of data races, i.e. thread-safety, at the language level

• Other modern programming language are also introducing features to
help with thread safety, e.g. @ThreadLocal annotations in Kotlin

14

Why things often break in C(++), Java, C#, ...

Dangerous combination: aliasing & mutation

This is the root cause of many problems, not just with concurrency

1. in concurrent (aka multi-threaded) context: data races

– Locking objects (eg synchronized methods in Java) can help,

but: expensive & risk of deadlock

2. in single-threaded context: dangling pointers

– Who is responsible for free-ing shared ? A or B?

3. in single-threaded context: broken assumptions

– If A changes the shared object, this may break B's code,

because B's assumptions about shared are broken

15

SomeObject

shared
A

B

Aliasing: two threads or objects

A and B both have a reference
to the same object shared

References to mutable data are dangerous

In multi-threaded programs, aliasing of mutable data structures can

be problematic, as the referenced data can change,

• even in safe programming languages such as Java or C# !

1 public void f(char[] x){

2 if (x[0] != 'a') { throw new Exception(); }

3 // Can we assume that x[0] is the letter 'a' here?

4 // No!! Another concurrent execution thread could

5 // change the content of x at any moment

If there is aliasing, another thread can modify the content of the array at any

moment.

16

References to immutable data are less dangerous

In a multi-threaded program, aliasing of immutable data structures

are safer.

1 public void f(String x){

2 if (x.charAt(0) != 'a') { throw new Exception(); }

3 // We CAN assume that x[0] is the letter 'a‘ here?

4 // Yes, as Java Strings are immutable

5 ...

Another thread with a reference to the same string cannot change the value

(or ‘contents’) of the string, as Java strings are immutable.

Kotlin has annotation @SharedImmutable to explicitly mark objects as being

immutable & (therefore) safe to share

17

Non-atomic check and use

aka

TOCTOU (Time of Check, Time of Use)

or

Race conditions

A classic source of (security) problems

• Race condition aka data race is a common type of bug in

concurrent programs

• Basically: two execution threads mess with the same data or

object (program variable, file, ...) at the same time

• Not necessarily a security bug, but it can be...

• Non-atomic check and use

 aka TOCTOU (Time Of Check, Time of Use)

 is a closely related type of security flaw

 Problem: some precondition required for an action is

invalidated between the time it is checked and the time the

action is performed

• Typically, this precondition is access control condition

• Typically, it involves some concurrency

19

Classic UNIX race condition

lpr –r

• Print utility with –r option to remove file after printing

• Could be used to delete arbitrary files

How?

1. User executes lpr –r symlink
where symlink is a symbolic link

2. OS checks that user has permission to read & delete this file

3. While the file is printing move the link is moved, eg to
/etc/passwd

4. after printing lpr,which has root permission, deletes
/etc/passwd

Root of the problem: time between check (2) and use (4)

20

Learning from past mistakes?

lpr –r is a classic security flaw from the 1970s, but similar flaws
happen decades later

CVE-2003-1073
A race condition in the at command for Solaris 2.6 through 9
allows local users to delete arbitrary files via the -r argument
with .. sequences in the job name, then modifying the directory
structure after at checks permissions to delete the file and
before the deletion actually takes place

 Combination of race condition with failure to check that file names
do not contain ..

21

Another classic: mkdir on Unix

• mkdir creates a new directory/folder

• This program executes as root

• in Linux terminology, it is setuid root

• It creates new directory non-atomically, in several steps:

1. enter super-user mode

2. creates the directory, with owner is root

3. sets the owner, to whoever invoked mkdir

4. exit super-user mode

• Attack: by creating a symbolic link between steps 2 and 3,

attacker can own any file

22

Example race condition

const char *filename="/tmp/erik";

 if (access(filename, R_OK)!=0) {

 ... // handle error and exit;

 }

 // file exists and we have access

 int fd open (filename, O_RDONLY);

 ...

 Between calls to access and open the file might be removed, or a

symbolic link in the path might be reset!

23

Race condition & file systems

Interaction with the file system is common source of TOCTOU issues

Signs of trouble:

• Access to files using filenames rather than file handles or file

descriptors

– filenames may point to different files at different moments in time

• Creating files or directories in publicly accessible places, for
instance /tmp

– especially if these have predictable file names

24

Spot the race condition!

public class SimpleServlet extends HttpServlet {

 private String query;

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 try { Connection conn =

 DriverManager.getConnection("jdbc:odbc ... ");

 query = "INSERT INTO roles" + "(userId, userRole)" + "VALUES " + "('" +

 request.getParameter("userId") + "'," +

 "'standard')";

 Statement stmt = conn.createStatement();

 stmt.executeUpdate(query);

 } catch ...

 }

25

Spot the race condition!

public class SimpleServlet extends HttpServlet {

 private String query;

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 try { Connection conn =

 DriverManager.getConnection("jdbc:odbc ... ");

 query = "INSERT INTO roles" + "(userId, userRole)" + "VALUES " + "('" +

 request.getParameter("userId") + "'," +

 "'standard')";

 Statement stmt = conn.createStatement();

 stmt.executeUpdate(query);

 } catch ...

 }

26

Concurrent calls of doGet will

act on the same Servlet object

and hence use the same

instance field query

Fix: now every (possibly

concurrent) call of doGet
has its own query field

Spot the race condition!

public class SimpleServlet extends HttpServlet {

 private String query;

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 String query;

 try { Connection conn =

 DriverManager.getConnection("jdbc:odbc ... ");

 query = "INSERT INTO roles" + "(userId, userRole)" + "VALUES " + "('" +

 request.getParameter("userId") + "'," +

 "'standard')";

 Statement stmt = conn.createStatement();

 stmt.executeUpdate(query);

 } catch ...

 }

27

• dasd

Edge & Safari GUI bug [CVE-2018-8383]

URL in address bar can be spoofed with a race condition:

JavaScript code loads legitimate page; changes address bar, but

over non-existent port; and then quickly loads another page

https://www.theregister.co.uk/2018/09/11/safari_edge_spoofing/

https://youtu.be/Ni2XzF5-ixY

https://youtu.be/dGJSsK55nfQ

	Slide 1
	Slide 2: Safe(r) programming languages
	Slide 3: Safe arithmetic
	Slide 4: Breaking type safety?
	Slide 5: Type confusion attacks
	Slide 6: How rich aka expressive can we make type systems?
	Slide 7: Ongoing evolution to richer types: non-null vs nullable
	Slide 8: Ongoing evolution to richer type systems: aliasing & information flow
	Slide 9: Other language-based (type) guarantees
	Slide 10: Thread-safety & Aliasing
	Slide 11: Problems with threads (ie. lack of thread safety)
	Slide 12: Weird multi-threading behaviour in Java
	Slide 13: Weird multi-threading behaviour in Java
	Slide 14: Data races and thread-safety
	Slide 15: Why things often break in C(++), Java, C#, ...
	Slide 16: References to mutable data are dangerous
	Slide 17: References to immutable data are less dangerous
	Slide 18: Non-atomic check and use aka TOCTOU (Time of Check, Time of Use) or Race conditions
	Slide 19: A classic source of (security) problems
	Slide 20: Classic UNIX race condition
	Slide 21: Learning from past mistakes?
	Slide 22: Another classic: mkdir on Unix
	Slide 23: Example race condition
	Slide 24: Race condition & file systems
	Slide 25: Spot the race condition!
	Slide 26: Spot the race condition!
	Slide 27: Spot the race condition!
	Slide 28
	Slide 29: Edge & Safari GUI bug [CVE-2018-8383]

