
Software Security

Compartmentalisation

Erik Poll

1

Today

• Compartmentilisation

within a process

– supported by the programming language (eg Java)

– supported by hardware (eg Intel SGX)

• Why compartmentalisation is a great idea! ☺

• But: compartmentalisation can fail or simply not be used

2

Modularisation

&

Compartmentalisation / Sandboxing

3

Modularisation
which includes

Compartmentalisation
 which includes

Sandboxing

4

Examples

5

Titanic

Does this mean compartmentalising is a bad idea?

No, but the attacker model was wrong.

• Making vessel double-hulled would have been a better form of

compartmentalising.

6

Compartmentalisation example: SIM card in phone

A SIM provides some trusted functionality (with a small TCB)

to a larger untrusted application (with a larger TCB)

7

main CPU

OS

trusted

functionality

untrusted

applicationcalls

Compartmentalisation examples

Compartmentalisation can be applied on many levels

• In an organisation

– eg terrorist cells in Al Qaida or extreme animal rights group

• In an IT system

– eg different machines for different tasks

• On a single computer, eg

– different processes for different tasks

– different user accounts for different task

– use virtual machines to isolate tasks

– partition your hard disk & install two OSs

• Inside a program / application / app / process

– different ‘modules’ with different tasks

8

Focus

of today

Isolation vs CIA (Confidentiality, Integrity & Availability)

Isolation is a very useful security property for programs and

processes (i.e. program in execution)

‘isolation’ can be understood in CIA terms, as

confidentiality and integrity of both data and code,

but conceptually less clear

9

Two use cases for compartments

Compartmentalisation is good to isolate different trust levels

1. to contain a untrusted process from attacking others

• aka sandboxing

2. to protect a trusted process from outside attacks

• Here, it makes sense to

apply it recursively

10

“platform”

“platform”

Compartmentalisation

Important questions to ask about any form of compartmentalisation

• What is the Trusted Computing Base (TCB) ?

– Compartmentalising critical functionality inside a trusted process

reduces the TCB for that functionality inside that process, but

increases the TCB with the TCB of the enforcement mechanism

• Can the compartmentalisation be controlled by policies?

– How expressive & complex are these policies?

– Expressivity can be good, but resulting complexity can be bad…

• What are input & output channels?

– We want exposed interfaces to be as simple, small, and just powerful

enough

• Are there any hidden channels? Eg timing behaviour

– These can be used deliberately, as covert channels,

or exist by accident, as side channels

11

Access control

Some compartments offer access control that can be configured

It involves

1. Rights/permissions

2. Parties (eg. users, processes, components)

3. Policies that give rights to parties

– specifying who is allowed to do what

4. Runtime monitoring to enforce policies,

which becomes part of the TCB

12

Compartmentalisation for security design

1. Divide systems into chunks – aka compartments, components,…

 Different compartments for different tasks

2. Give minimal access rights to each compartment

 aka principle of least privilege

3. Have strong encapsulation between compartments

 so flaw in one compartment cannot corrupt others

4. Have clear and simple interfaces between compartments

 exposing minimal functionality

Benefits:

a. Reduces TCB for certain security-sensitive functionality

b. Reduces the impact of any security flaws.

13

Operating System (OS) Access Control

See also Chapter 2 of the lecture notes

14

Classical OS-based security (reminder)

15

Hardware (CPU, memory, I/O peripherals)

process

A

OS (incl. file system)

process

B

access

control

rights

&

policies

Signs of OS access control

16

Problems with OS access control

1. Size of the TCB

The Trusted Computing Base for OS access control is

so there will be security flaws in the code.

The only safe assumption: a malicious user process on a typical OS

(Linux, Windows, BSD, iOS, Android, ...) will be able to get root rights.

2. Too much complexity

The languages to express access control policy are very complex,

so people will make mistakes

3. Not enough expressivity / granularity

Eg the OS cannot do access control within process, as processes

as the ‘atomic’ units

Note: fundamental conflict between the need for expressivity

and the desire to keep things simple

17

huge

Example: complexity (resulting in privilege escalation)

UNIX access control uses 3 permissions (rwx) for 3 categories of

users (owner,group,others), for files & directories.

Windows XP uses 30 permissions, 9 categories of users, and 15

kinds of objects.

Example common configuration flaw in XP access control, in 4 steps:

1. Windows XP uses Local Service or Local System services for

privileged functionality (where UNIX uses setuid binaries)

2. The permission SERVICE_CHANGE_CONFIG allows changing the

executable associated with a service (say a printer driver)

3. But... it also allows to change the account under which it runs,
incl. to Local System, which gives maximum root privileges.

4. Many configurations mistakenly grant SERVICE_CHANGE_CONFIG

to all Authenticated Users...

18

Privilege escalation in Windows XP

Unintended privilege escalation due to misconfigured access rights

of standard software packages in Windows XP:

 [S. Govindavajhala and A.W. Appel, Windows Access Control Demystified, 2006]

Moral of the story (1) : KEEP IT SIMPLE

Moral of the story (2) : If it is not simple, check the details

19

chroot jail

chroot - change root - is nice example of compartmentalisation

(of file system) in UNIX/Linux. It is coarse but simple.

• restricts access of a process to a subset of file system,

ie. changes the root of file system for that process

• Eg running an application you just downloaded with

 chroot /home/sos/erik/trial ; /tmp

 restricts access to just these two directories

• Using traditional OS access control permissions for this would be very

tricky! It would require getting permissions right all over the file system.

20

Limits in granularity

OS can’t distinguish components within process, so can’t

differentiate access control for them, or do access control between

them

Hardware (CPU, memory, I/O peripherals)

process A

Operating System

process B

trusted

module A

untrusted

module B

21

??

?

?

Limitation of classic OS access control

• A process has a fixed set of permissions. Usually, all

permissions of the user who started it

• Execution with reduced permission set may be needed

temporarily when executing untrusted or less trusted code.

For this OS access control may be too coarse.

Remedies/improvements

• Allowing users to drop rights when they start a process

• Asking user approval for additional permissions at run-time

• Using different user accounts for different applications,

as Android does

• Split a process into multiple processes with different access

rights

22

Chrome browser process was split into multiple OS processes

• (Complex!) rendering engine is black box for browser kernel

• Running a new process per domain can enforce the restrictions of the

SOP (Same Origin Policy)

• Advantage: TCB for certain operations drastically reduced

Example: compartmentalisation in Chrome

rendering engine:
handling HTML, CSS

javascript, XML, DOM,

rendering

rendering engine:
handling HTML, CSS

javascript, XML, DOM,

rendering

browser kernel:
cookie & passwd database, network

stack, TLS, window management

rendering engine:
handling HTML, CSS

javascript, XML, DOM,

rendering

23

One rendering engine per tab,
plus one for trusted content
(eg HTTPS certificate warnings)

No access to local file system
and to each other

One browser kernel
with full user privileges

rendering engine:
handling HTML, CSS

javascript, DOM,

rendering images

More compartmentalisation in browsers

There are more forms of compartmentalisation and sandboxing

inside browsers, namely in the HTML content do

• SOP (Same Origin Policy)

• and optionally even inside the HTML content displayed

– CSP (Content Security Policy)

– Sandboxing for iframes

Microsoft Edge introduced Super Duper Secure Mode (SDSM) in 2021 to

remove some complexity, eg disabling JIT, and to enable some additional

memory protection mechanisms, eg CET (Control flow Enforcement

Technology)

https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode/

24

Language-level access control

Chapter 4 of the lecture notes

25

Access control at the language level

In a safe programming language, access control can be provided

within a process, at language-level, because interactions between

components can be restricted & controlled

This makes it possible to have security guarantees in the presence

of untrusted code (which could be malicious or just buggy)

• Without memory-safety, this is impossible. Why?

Because B can access any memory used by A

• Without type-safety, it is hard. Why?

Because B can pass ill-typed arguments to A's interface

process

trusted

module A

untrusted

module B

26

Language-level sandboxing on top of OS sandboxing

Hardware (CPU, memory, I/O peripherals)

process A

Operating System

process B

trusted

module A

untrusted

module B

Execution engine

 (eg Java or . NET VM)

27

Sand-boxing with code-based access control

Use cases

• using code from some untrusted or less trusted library

– ie protection from supply chain attacks

• concentrating security-sensitive functionality is small module

– smaller code base => smaller chance of bugs

– put best programmers on this module

– do more quality assurance for this module

(more design reviews, more testing, more code reviews, ...)

28

Sand-boxing with code-based access control

Language platforms such as Java and .NET provide

code-based access control

⚫ this treats different parts of a program differently

⚫ on top of the user-based access control of the OS

Ingredients for this access control, as for any form of access

control

1. permissions

2. components (aka protection domains)

• in traditional OS access control, this is the user ID

3. policies

• which gives permissions to components,

 ie. who is allowed to do what

29

Code-based access control in Java

30

Example configuration file that expresses a policy

 grant

 codebase "http://www.cs.ru.nl/ds", signedBy "Radboud",

 { permission

 java.io.FilePermission "/home/ds/erik","read";

 };

 grant

 codebase "file:/.*"

 { permission

 java.io.FilePermission "/home/ds/erik","write";

 }

protection domains

Protection domains

• Protection domains based on evidence

1. Where did it come from?

• where on the local file system (hard disk) or where on the

internet

2. Was it digitally signed and if so by who?

• using a standard PKI

• When loading a component, the Virtual Machine (VM) consults the

security policy and remembers the permissions

31

Permissions

• Permissions represent a right to perform some actions.

Examples:

– FilePermission(name, mode)

– NetworkPermission

– WindowPermission

• Permissions have a set semantics, so one permission can be a

superset of another one.

– E.g. FilePermission("*", "read")

includes FilePermission("some_file.txt", "read")

• Developers can define new custom permissions.

32

Last week: code-based access control in Java

33

Example configuration file that expresses a policy

 grant

 codebase "http://www.cs.ru.nl/ds", signedBy "Radboud",

 { permission

 java.io.FilePermission "/home/ds/erik","read";

 };

 grant

 codebase "file:/.*"

 { permission

 java.io.FilePermission "/home/ds/erik","write";

 }

protection domains

Virtual Machine

package trusted;

class Trusted {

 void m1 ()

 {

 System.delete file;

 }

}

package evil;

class Bad {

 void f1 () { System.delete file; }

}

34

Complication: methods calls

35

Virtual Machine

package trusted;

class Trusted {

 void m1 ()

 {

 System.delete file;

 }

}

package evil;

class Bad {

 Trusted t;

 void f1 () { System.delete file; }

 void f2()

 { t.m1(); }

}

Should

the file be

deleted ?

Complication: method calls

There are different possibilities here

1. allow action if top frame on the stack has permission

2. only allow action if all frames on the stack have permission

3.

Pros? Cons?

1. is very dangerous: a class may accidentally expose dangerous

functionality

2. is very restrictive: a class may want to, and need to, expose some

dangerous functionality, but in a controlled way

More flexible solution: stackwalking aka stack inspection

36

Exposing dangerous functionality, (in)securely

Class Trusted{

 public void unsafeMethod(File f){

 delete f; } // Could be abused by evil caller

 public void safeMethod(File f) {

 // lots of checks on f;

 if all checks are passed, then delete f;}

 // Cannot be abused, assuming checks are bullet-proof

 public void anotherSafeMethod(){

 delete ″/tmp/bla″; }

 // Cannot be abused, as filename is fixed.

 // Assuming this file is not important..

}

37

Using visibility to control access?

Class Trusted{

 private void unsafeMethod(File f){

 delete f; } // Could be abused by evil caller

 public void safeMethod(File f) {

 // lots of checks on f;

 if all checks are passed, then delete f;}

 // Cannot be abused, assuming checks are bullet-proof

 public void anotherSafeMethod(){

 delete ″/tmp/bla″; }

 // Cannot be abused, as filename is fixed.

 // Assuming this file is not important..

}

38

Making the unsafe method

private & hence invisible to

untrusted code helps, but is

error-prone. Some public

method may call this private

method and indirectly

expose access to it

Hence: stackwalking

Stack walking

• Every resource access or sensitive operation protected by a

demandPermission(P) call for an appropriate permission P

– no access without asking permission!

• The algorithm for granting permission is based on stack
inspection aka stack walking

Stack inspection first implemented in Netscape 4.0,

then adopted by Internet Explorer, Java, .NET

39

Stack walking: basic concepts

Suppose thread T tries to access a

resource

Basic algorithm:

 access is allowed iff

 ALL components on the call stack

have the right to access the resource

 ie

– rights of a thread is the

intersection of rights of all

outstanding method calls

40

C3

C2

C7

C5

Stack for thread T:

 C5 called by C7

 called by C2 and C3

Stack walking

Basic algorithm is too restrictive in some cases

E.g.

– Allowing an untrusted component to delete some specific

files

– Giving a partially trusted component the right to open

specially marked windows (eg. security pop-ups) without

giving it the right to open arbitrary windows

– Giving an app the right to phone certain phone numbers (eg.

only domestic ones, or only ones in the mobile’s phonebook)

41

Stack walk modifiers

• Enable_permission(P):

– means: don’t check my callers for this permission, I take full

responsibility

– This is essential to allow controlled access to resources for

less trusted code

• Disable_permission(P):

– means: don’t grant me this permission, I don’t need it

– This allows applying the principle of least privilege (ie. only

givie or ask the privileges really needed, and only when they

are really needed)

42

Stack walking: algorithm

On creating new thread:

 new thread inherit access control context of creating thread

DemandPermission(P) algorithm:

1. for each caller on the stack, from top to bottom:

 if the caller

a) lacks Permission P: throw exception

b) has disabled Permission P: throw exception

c) has enabled Permission P: return

2. check inherited access control context

43

Stack walk modifiers: examples

44

PD1 PD3PD2 demandPermission(P1)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P1) fails because PD1 does not have

Permission P1

Will DemandPermission(P1) succeed ?

callscalls

Stack walk modifiers: examples

45

PD1 PD3PD2 demandPermission(P1)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P1) succeeds

EnablePermission(P1)

Will DemandPermission(P1) succeed ?

callscalls

Stack walk modifiers: examples

46

PD1 PD3PD2 demandPermission(P2)

P4,P2 P1,P2 P1,P2,P3

DemandPermission(P2) fails

DisablePermission(P2)

Will DemandPermission(P2) succeed ?

callscalls

Using stack walking to restrict access to functionality

Class Trusted{

 public void unsafeMethod(File f){

 delete f; }

 public void safeMethod(File f) {

 ... // lots of checks on f;

 enablePermission (FileDeletionPermission);

 delete f;}

 public void anotherSafeMethod(){

 enablePermission (FileDeletionPermission);

 delete “/tmp/bla”; }

}

“I take full

responsibility

for my callers”

47

Typical programming pattern

The typical programming pattern in privileged components,

esp. in public methods accessible by untrusted code:

 public methodExposingScaryFunctionality (A a, B b){

 ; do security checks on arguments a and b

 enable privileges (P1,P2);

 do the dangerous stuff that needs these privileges;

 disable privileges (P1,P2);

 }

in keeping with the principle of least privilege

48

Spot the security flaw?

Class Good{

 public void m1 (String filename) {

 lot of checks on filename;

 enablePermission (FileDeletionPermission);

 delete filename;}

 public void m2(byte[] filename){

 lot of checks on filename;

 enablePermission (FileDeletionPermission);

 delete filename;}

}

49

m2 is insecure,

because byte arrays

are mutable;

attackers can could

change the value of

filename after the

checks, in a multi-

threaded setting

TOCTOU attack (Time of Check, Time of Use)

Class Good{

 public void m1 (String filename) {

 lot of checks on filename;

 enablePermission (FileDeletionPermission);

 delete filename;}

 public void m2(byte[] filename){

 lot of checks on filename;

 enablePermission (FileDeletionPermission);

 delete filename;}

}

50

m1 is secure, because

Strings are immutable
(assuming there are no TOCTOU

vulnerabilities in the underlying file

systems, eg due to symbolic links)

Need for privilege elevation

Note the similarity between

• Methods which enable some permissions

• which temporarily raise privileges

• Linux setuid root programs or Windows Local System

Services

• which can be started by any user, but then run in admin mode

• OS system calls invoked from a user program

• which cause a switch from user to kernel model

All are trusted services that elevate the privileges of their clients

– hopefully in a secure way...

– if not: privilege escalation attacks

In any code review, such code obviously requires extra attention!

51

Security flaw in code signing check (Magic Coat)

Implementation of the class Class in JDK1.1.1

 package java.lang;

 public class Class {

 private String[] signers;

 /** Obtain list of signers of given class */

 public String[] getSigners()

 { return signers; }

What is the bug ?

How can it be fixed ?

Could it be prevented at language-level ?

52

Security flaw in code signing check (Magic Coat)

Implementation of the class Class in JDK1.1.1

 package java.lang;

 public class Class {

 private String[] signers;

 /** Obtain list of signers of given class */

 public String[] getSigners()

 { return signers; }

What is the bug ? getSigners leaks reference to internal data structure

How can it be fixed ? getSigners should clone the array and return a clone

Could it be prevented at language-level ? By having immutable arrays, or type

system for alias control

53

Java safety & security guarantees

• memory safety

• strong typing

• visibility restrictions (public, private,…)

• immutable fields using final

• unextendable classes using final

• immutable objects, eg String, Boolean, Integer, URL

• sandboxing based on stackwalking

This allows security guarantees to be made even if part of the code is

untrusted – or simply buggy

Similar guarantees for Microsoft .NET/C#, Scala, …

54

	Slide 1
	Slide 2: Today
	Slide 3
	Slide 4
	Slide 5: Examples
	Slide 6: Titanic
	Slide 7: Compartmentalisation example: SIM card in phone
	Slide 8: Compartmentalisation examples
	Slide 9: Isolation vs CIA (Confidentiality, Integrity & Availability)
	Slide 10: Two use cases for compartments
	Slide 11: Compartmentalisation
	Slide 12: Access control
	Slide 13: Compartmentalisation for security design
	Slide 14: Operating System (OS) Access Control
	Slide 15: Classical OS-based security (reminder)
	Slide 16: Signs of OS access control
	Slide 17: Problems with OS access control
	Slide 18: Example: complexity (resulting in privilege escalation)
	Slide 19: Privilege escalation in Windows XP
	Slide 20: chroot jail
	Slide 21: Limits in granularity
	Slide 22: Limitation of classic OS access control
	Slide 23: Example: compartmentalisation in Chrome
	Slide 24: More compartmentalisation in browsers
	Slide 25: Language-level access control
	Slide 26: Access control at the language level
	Slide 27: Language-level sandboxing on top of OS sandboxing
	Slide 28: Sand-boxing with code-based access control
	Slide 29: Sand-boxing with code-based access control
	Slide 30: Code-based access control in Java
	Slide 31: Protection domains
	Slide 32: Permissions
	Slide 33: Last week: code-based access control in Java
	Slide 34
	Slide 35: Complication: methods calls
	Slide 36: Complication: method calls
	Slide 37: Exposing dangerous functionality, (in)securely
	Slide 38: Using visibility to control access?
	Slide 39: Stack walking
	Slide 40: Stack walking: basic concepts
	Slide 41: Stack walking
	Slide 42: Stack walk modifiers
	Slide 43: Stack walking: algorithm
	Slide 44: Stack walk modifiers: examples
	Slide 45: Stack walk modifiers: examples
	Slide 46: Stack walk modifiers: examples
	Slide 47: Using stack walking to restrict access to functionality
	Slide 48: Typical programming pattern
	Slide 49: Spot the security flaw?
	Slide 50: TOCTOU attack (Time of Check, Time of Use)
	Slide 51: Need for privilege elevation
	Slide 52: Security flaw in code signing check (Magic Coat)
	Slide 53: Security flaw in code signing check (Magic Coat)
	Slide 54: Java safety & security guarantees

