
Software Security

Compartmentalisation

(part 2)

Erik Poll

1

In-process Compartmentalisation

Hardware (CPU, memory, I/O peripherals)

process A

Operating System

process B

trusted

module A

untrusted

module B

2

??

?

?

One way to do in-process compartmentalisation:

Language-level access control

Chapter 4 of the lecture notes

3

Language-level sandboxing on top of OS sandboxing

Hardware (CPU, memory, I/O peripherals)

process A

Operating System

process B

trusted

module A

untrusted

module B

Execution engine

 (eg Java or . NET VM)

4

Code-based access control in Java

5

Example configuration file that expresses a policy

 grant

 codebase "http://www.cs.ru.nl/ds", signedBy "Radboud",

 { permission

 java.io.FilePermission "/home/ds/erik","read";

 };

 grant

 codebase "file:/.*"

 { permission

 java.io.FilePermission "/home/ds/erik","write";

 }

protection domains

Java safety & security guarantees

• memory safety

• strong typing

• visibility restrictions (public, private,…)

• immutable fields using final

• unextendable classes using final

• immutable objects, eg String, Boolean, Integer, URL

• code-based access control aka sandboxing

 based on stackwalking

This allows security guarantees to be made even if part of the code is

untrusted – or simply buggy

Similar guarantees for Microsoft .NET/C#, Scala, …

6

Components of the Java Runtime

7

Java Runtime

Environment (JRE)

incl. Virtual

Machine (VM)
VM

package A

APIs

hardware (CPU + peripherals)

Security

Manager

Class

Loader

package B

TCB for Java’s code-based access control

• Byte Code Verifier (BCV)

typechecks the byte code

• Virtual Machine (VM)

executes the byte code (with some type-checking at run time)

• SecurityManager

does the runtime access control by stack walking

• ClassLoader

downloads additional code, invoking BCV & updating policies for the

SecurityManager

8

The security failure of Java (1)

Nice ideas, but Java has resulted in many security worries.

Some contributing / root causes of the security problems:

• Large TCB with large & complex attack surface, growing over

time

– Many classes in the core Java API are in the TCB and can be

accessed by malicious code

– Security-critical components (eg . ClassLoader and SecurityManager)

are implemented in Java & runs on the same VM

• Apart from logical flaws, there are risks of these components
accidentally exposing a field as protected or sharing a reference

to mutable object with untrusted code

– Java’s reflection mechanism makes all this much more complex

• The possibility to download code over the internet is a dangerous

capability, even if it is protected & controlled

• Messy update mechanism

9

The security failure of Java (2)

Different kind of problem with Java’s nice sandboxing possibilities:

 People do not use it

December 2021 a security vulnerability in open-source Log4J

logging API was revealed, which affected many systems.

Compartmentalisation of logging functionality is natural & obvious,

– does the logging functionality need network access?

but clearly nobody does it.

Dutch NCSC did useful work when Log4J flaw hit,

 eg https://github.com/NCSC-NL/log4shell

US Cyber Safety Review Board (CSRB) wrote up good report on Log4J

10

Log4J attack

Cas van Cooten, @chvancooten, https://twitter.com/chvancooten/status/1469340927923826691 11

Another way to do in-process compartmentalisation:

Hardware-based sandboxing

- also for unsafe languages

12

Sandboxing in unsafe languages

• Unsafe languages cannot provide sandboxing at language level

• An application written in an unsafe language could still use OS

sandboxing by splitting the code across different processes (as

e.g. browsers use)

• An alternative approach:

use sandboxing support provided by underlying hardware,

to impose memory access restrictions inside a process

13

Example: security-sensitive code in large program

14
Example from [N. van Ginkel et al, Towards Safe Enclaves, HotSpot 2016]

Bugs or

malicious code

anywhere in the

program could

access the

high-security data

static int tries_left = 3;

 static int PIN = 1234;

 static int secret = 666;

 int get_secret (int pin_guess) {

 if (tries_left > 0) {

 if (PIN == pin_guess) {

 tries_left = 3; return secret; }

 else {

 tries_left--; return 0 ;}

 } }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c

Isolating security-sensitive code with secure enclaves

15

static int tries_left = 3;

 static int PIN = 1234;

 static int secret = 666;

 int get_secret (int pin_guess) {

 if (tries_left > 0) {

 if (PIN == pin_guess) {

 tries_left = 3; return secret; }

 else {

 tries_left--; return 0 ;}

 } }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c
Enclave

Isolating security-sensitive code with secure enclaves

16

static int tries_left = 3;

 static int PIN = 1234;

 static int secret = 666;

 int get_secret (int pin_guess) {

 if (tries_left > 0) {

 if (PIN == pin_guess) {

 tries_left = 3; return secret; }

 else {

 tries_left--; return 0 ;}

 } }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c
Enclave

untrusted code

cannot access

sensitive data

Isolating security-sensitive code with secure enclaves

17

static int tries_left = 3;

 static int PIN = 1234;

 static int secret = 666;

 int get_secret (int pin_guess) {

 if (tries_left > 0) {

 if (PIN == pin_guess) {

 tries_left = 3; return secret; }

 else {

 tries_left--; return 0 ;}

 } }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c
Enclave

Only allowed entry point

(for get_secret)

Untrusted code should not be

able to jump to the middle of

get_secret code (recall return-to-

libc & ROP attacks)

Secure enclaves

• Enclaves isolates part of the code together with its data

– Code outside the enclave cannot access the enclave's data

– Code outside the enclave can only jump to valid entry points

for code inside the enclave

• Less flexible than stack walking:

– Code in the enclave cannot inspect the stack as the basis for

security decisions

– Not such a rich collection of permissions, and programmer

cannot define his own permissions

• More secure, because

– OS & Java VM (Virtual Machine) are not in the TCB

– Also some protection against physical attacks is possible

• But are physical attacks really in our attacker model? DRM is

typically the reason to include user in the attacker model?

18

Enclaves using Intel SGX

Intel SGX provides hardware support for enclaves

• protecting confidentiality & integrity of enclave’s code & data

• providing a form of Trusted Execution Enviroment (TEE)

This not only protects the enclave from the rest of the program,

but also from the underlying Operating System!

• Hence example use cases include

– Running your code on cloud service you don’t fully trust: cloud

provider cannot read your data or reverse-engineer your code

– DRM (Digital Rights Management): decrypting video content on

user’s device without user getting access to keys

• Some concerns about Intel’s business model & level of control:

will only code signed by Intel be allowed to run in enclaves?

19

The security failure of SGX
And other secure enclave technologies?

Growing list of micro-architectural side-channel attacks

• Specre, Meltdown, and their variants

that are proving hard to eridate them

Maybe information leakage between execution threads running on

the same hardware is inevitable?

SGX was depreciated for Intel 11 in 2021, but development continues for

Intel processors for cloud & enterprise usage

20

Execution-aware memory protection

A more light-weight approach to get secure enclaves

• access control based on the value of the program counter,

so that some memory region can only be accessed by a specific

part of the program code

• This provides similar encapsulation boundary inside a process as

SGX

– Eg. crypto keys can be made only accessible from the module with

the encryption code

– The possible impact of an buffer overflow attack is the rest of the

code is then reduced

[Google, US patent 9395993 B2, 2016]

[Koeberl et al., TrustLite: A security architecture for tiny embedded devices,

European Conference on Computer Systems. ACM, 2014]

Spot the defect!

22

static int tries_left = 3;

 static int PIN = 1234;

 static int secret = 666;

 int get_secret (int pin_guess) {

 if (tries_left > 0) &&

 (PIN == pin_guess) {

 tries_left = 3; return secret; }

 else {

 tries_left--; return 0 ;}

 }

include ″secret.h″

… // other modules

void main () {

…

}

secret.c

main.c

Repeated calls will cause

integer underflow of tries_left,

given attacker infinite number

of tries

Moral of the story (this bug):

• You can still screw things up

• You have to be very careful

writing security-sensitive

enclave code

But:

• Screwing up anywhere else in

the program can not leak the PIN

1. I/O attacker

2. Malicious code attacker
inside the application

• Java sandbox &

SGX protect against this

3. Platform level attacker
inside the platform,

‘under’ the application

• SGX also protects against this

In all cases, the application itself still has to ensure it exposes only the right

functionality, correctly & securely (eg. with input validation in place)

Different attacker models for software

23

application

platform

malicious input

application

observable output

application

malicious

component

Recap: different forms of compartmentalisation

• Conventional OS acccess control

• Language-level sandboxing in safe languages

• eg Java sandboxing using stackwalking

• Java VM & OS in the TCB

• Hardware-supported enclaves in unsafe languages

• eg Intel SGX enclaves

• underlying OS possibly not in the TCB

24

access control

within an

application

access control

of applications and

between applications

Recap

• Language-based sandboxing is a way to do access control within

a application: different access right for different parts of code

– This reduces the TCB for some functionality

– This may allows us to limit code review to small part of the code

– This allows us to run code from many sources on the same VM and

don’t trust all of them equally

• Hardware-based sandboxing can also achieve this also for unsafe

programming languages

– Much smaller TCB: OS and VM are no longer in the TCB

– But less expressive & less flexible

• No stackwalking or rich set of permissions

25

	Slide 1
	Slide 2: In-process Compartmentalisation
	Slide 3: One way to do in-process compartmentalisation: Language-level access control
	Slide 4: Language-level sandboxing on top of OS sandboxing
	Slide 5: Code-based access control in Java
	Slide 6: Java safety & security guarantees
	Slide 7: Components of the Java Runtime
	Slide 8: TCB for Java’s code-based access control
	Slide 9: The security failure of Java (1)
	Slide 10: The security failure of Java (2)
	Slide 11: Log4J attack
	Slide 12: Another way to do in-process compartmentalisation: Hardware-based sandboxing - also for unsafe languages
	Slide 13: Sandboxing in unsafe languages
	Slide 14: Example: security-sensitive code in large program
	Slide 15: Isolating security-sensitive code with secure enclaves
	Slide 16: Isolating security-sensitive code with secure enclaves
	Slide 17: Isolating security-sensitive code with secure enclaves
	Slide 18: Secure enclaves
	Slide 19: Enclaves using Intel SGX
	Slide 20: The security failure of SGX And other secure enclave technologies?
	Slide 21: Execution-aware memory protection
	Slide 22: Spot the defect!
	Slide 23: Different attacker models for software
	Slide 24: Recap: different forms of compartmentalisation
	Slide 25: Recap

