
Software Security

Typical security problems,

esp. INPUT problems

Erik Poll

Digital Security

Radboud University Nijmegen

1

Classifications & rankings of security flaws

Many proposals to categorise & rank common security vulnerabilities

in bug classes

• OWASP Top 10

• SANS CWE Top 25

• 24 Deadly Sins of Software Security

• …

• …

2

OWASP Top Ten

3

SANS CWE Top 25 [2021]

1. Out-of-bounds Write

2. Cross-Site Scripting (XSS)

3. Out-of-bounds Read

4. Improper Input Validation

5. OS command injection

6. SQL Injection

7. Use After Free

8. Path traversal

9. Cross-Site Request Forgery (CSRF)

10. Unrestricted Upload of File with

Dangerous Type

11. Missing Authentication for Critical

Function

12. Integer Overflow or Wraparound

13. Deserialization of Untrusted Data

14. Improper Authentication

15. NULL Pointer Dereference

16. Use of Hard-coded Credentials

17. Improper Restriction of Operations

within Buffer Bounds

18. Missing Authorization

19. Incorrect Default Permissions

20. Exposure of Sensitive Information

to an Unauthorized Actor

21. Insufficiently Protected Credentials

22. Incorrect Permission Assignment

for Critical Resource

23. Improper Restriction of XML

External Entity Reference (XXE)

24. Server-Side Request Forgery

(SSRF)

25. Command Injection

See https://cwe.mitre.org/top25/index.html

CWE Top 1357 [Nov 2023]

See https://cwe.mitre.org/data/definitions/1000.html

5

• sadsd

6

http://cwe.mitre.org/data/pdf/1000_with_1344_colors.pdf

CVE, CWE, CRE

• CVE - Common Vulnerability Enumeration

 https://cve.mitre.org

• CWE - Common Weakness Enumeration

 https://cwe.mitre.org

Here weakness means ‘bug class’

NB this is very non-standard use of the term!

• CRE - Common Requirement Enumeration

 https://www.opencre.org

Recent initiative to standardise/relate requirements across (the many!)

different security standards & guidelines

7

Top n lists of security flaws

List and classifications of security flaws are

• very useful

– for awareness & prevention – people keep making the same mistakes!

– for understanding & tackling root causes

• very messy

– as you can classify flaws in different ways

• always incomplete

– there are always new & more attacks

– application-specific flaws are missing in generic taxonomies

• can be misleading & used incorrectly

– e.g. ‘lack of input validation’ – more on that later

8

Tackling INPUT problems

9

High level observations

Most (all?) attacks involve malicious input which ends up in a

place where processing it causes software to ‘go off the rails’

Input may be forwarded between systems to reach place where it

does damage

Are there structural approaches to combat these 100s of variants of

input handling problems?

10

applicationinput

back-end

service

input application

Attack surface for input problems

11

Ethernet

TCP/IP

HTTP

TLS

Ethernet

TCP/IP

HTTP

TLS

Web

server

database

OS

file system

Big attack surface: inside application, in underlying protocol stack,

and in external services.

Attack surface for input problems

12

Wifi / 4G

TCP/IP

HTTP

TLS

Ethernet

TCP/IP

HTTP

TLS

App or

browser

database

OS

file system

HTML rendererPDF viewer

MS Office

JavaScript

engine

Terminology

Untrusted input travels as tainted data from source to sink

Sinks can be external APIs or internal functions / bugs

13

Applicationsource

Another

applicationinput

Platform libraries

sink

2-nd order attacks

14

Application
Another

application

input

Another

application

Example: 2nd order SQL injection

Suppose I want to access Lejla's account

1. I register an account with the name lejla' --

2. I log in as lejla' -- and change my password

3. If the password change is done with the SQL statement

UPDATE users

 SET password='abcd1234'

 WHERE username='lejla' -- '

then I have reset Lejla's password

• Here abcd1234 is user input, but the dangerous input comes from

the server's own database, where it was injected earlier

The moral of the story: don't trust any input, not even data coming from

sources you think can trust

15

Expect the unexpected!

Malicious input can come from unexpected, ‘trusted’ sources

Talking about trusted vs untrusted (user) inputs can be misleading!

Two types of problems: bugs vs features

17

(abuse of)

a feature !

2. Injection flaws

back-end

service

malicious

input

eg SQL

query

application

application
malicious

input

a bug !
1. Processing flaws

eg buffer overflow in

PDF viewer of JPEG

graphics library

Recurring themes: parsing & languages

• Processing an input begins with parsing

• This depends on input language / format / protocol

Eg TCP/IP packets, HTTP, HTML, SQL, X509, mp3, JPEG, webp,

PDF, URL, email address, Word, Excel, ...

• Input handling bugs often come down to parsing bugs

– buggy parsing (eg buffer overflow in PDF parsing)

– unintended parsing (eg parsing user input as SQL command)

18

Buggy parsing (1)

Buggy – insecure - parsing can cause security bugs:

• esp. if parser is written in memory unsafe language: memory

corruption can lead to memory leaks, RCE, ...

• Parsers written in memory safe language can still crash

High risk for complex input formats: TCP/IP, 2/3/4/5G, Bluetooth,

Wifi, JPEG, PDF, HTML, Word, ...

Recall examples from the fuzzing lecture

19

Buggy parsing (2)

Buggy – incorrect - parsing can also cause misinterpretation

For example:

• Domain www.paypal.com\0.mafia.com in X.509 certificate

• Name paypal.com,mafia.com in X.509 certificate

• For which domain is this JDNI loop-up?

${jndi:ldap://127.0.0.1#.evilhost.com:1389/a}

Parser differentials: two applications parse the same data

differently, leading to exploitable misunderstandings

High risk for complex or poorly specified data formats

20

Unintended parsing

Correct but unintended parsing can also cause security problems,

namely injection attacks

Eg parsing (and processing) of user input

• as SQL command

• as file path

• as OS command

• as HTML or JavaScript

•

High risk for complex or EXPRESSIVE data formats/language

21

Typical injection attack, eg SQLi

22

Back-end

service, eg

SQL database

Application

Erik Poll

’OR 1=1;--
SELECT * FROM Accounts

WHERE Username = ’’ OR 1=1;

--’ AND Password = ’1234’;

Is this an input problem or an output problem?

Injection attacks

General recipe: user input is combined with other data and

forwarded to & processed by some back-end API

Tell-tale sign 1: special characters or keywords, eg. ; < > \ &

Tell-tale sign 2: use of strings

23

LDAP injection

An LDAP query sent to the LDAP server to authenticate a user

(&(USER=jan)(PASSWD=abcd1234))

can be corrupted by giving as username

admin)(&)

which results in

(&(USER=admin)(&))(PASSWD=pwd)

where only first part is used, and (&) is LDAP notation for TRUE

24

XPath injection

XML data, eg

<student_database>

<student><username>jan</username><passwd>abcd1234</passwd>

</student>

<student><username>kees</nameuser><passwd>secret</passwd>

<student>

</student_database>

can be accessed by XPath queries, eg

 (//student[username/text()='jan' and

 passwd/text()='abcd123']/account/text()) _database>

which can be corrupted by malicious input such as

' or '1'='1'

25

Blind injection attacks

SQL injection attack with

http://a.com/xyz?sid=s1232 AND SUBSTRING(user,1,1) = ’a’

(Lack of) an error response reveals if username starts with ’a’

In a blind injection attack, we’re only interested in leakage of

information about the database, not in the effect of the query on the

database (to corrupt data in the database) or the actual response

(to leak data from database).

26

More injection attacks

The class of injection attacks is bigger than you may realise:

• format string attacks

– special processing of %n, %s, ...

• deserialisation attacks

– special processing of serialised data representation

• macros: Word & Excel containing Visual Basic (VBA)

– or other weird Office ‘features’!

• PDFs containing malicious JavaScript or ActionScript

• XML bombs & Zip bombs

• SMB relay attacks with bizarre file names

• …

27

More obscure injection attacks on Microsoft Office

Attackers can trigger RCE in Office without normal Visual Basic

macros, using

• DDE (Dynamic Data Exchange)

Also possible with emails in Outlook Rich Text Format (RTF)

 https://sensepost.com/blog/2017/macro-less-code-exec-in-msword

• Excel 4.0 macros

• Archaic legacy features that predate VBA

http://www.irongeek.com/i.php?page=videos/derbycon8/track-3-18-the-ms-

office-magic-show-stan-hegt-pieter-ceelen

https://outflank.nl/blog/author/stan

Recall: complexity in data formats is bad

28

DDE warnings in Office

Microsoft initially claimed DDE was a feature, and not a bug, but later then

did publish a security advisory in autumn 2017

29

Windows supports many notations for file names

• classic MS-DOS notation C:\MyData\file.txt

• file URLs file:///C|/MyData/file.txt

• UNC (Uniform Naming Convention) \\192.1.1.1\MyData\file.txt

which can be combined in fun ways, eg file://///192.1.1.1/MyData/file.txt

Some cause unexpected behaviour by involving other protocols, eg

• UNC paths to remote servers are handled by SMB protocol;

SMB sends password hash to remote server to authenticate,

aka pass the hash

 This can be exploited by SMB relay attacks
… - CVE-2000-0834 in Windows telnet ……

… - CVE-2008-4037 in Windows XP/Server/Vista

… - CVE-2016-5166 in Chromium ……

… - CVE-2017-3085 & CVE-2016-4271 in Adobe Flash …

… - ZDI-16-395 in Foxit PDF viewer

complexity and (unexpected) EXPRESSIVITY is bad

 [Example thanks to Björn Ruytenberg, https://blog.bjornweb.nl]

SMB relays: Injection attacks via Windows file names

30

Eval

Some programming languages have an eval(...) function which

treats an input string as code and executes it

• Most interpreted languages an eval construct:

JavaScript, python, Haskell

Why do languages have this?

• Useful for functionality: it allows very ‘dynamic’ code

Why is this a terrible idea?

1. Prime target for injection attacks

2. Complicates static analysis

Eval is evil and should never be used!

31

Social Engineering as injection attacks?

Some forms of social engineering can be regarded as

injection attacks:

• Attackers trick victims into executing some command

32

Grant me

a thousand

wishes

Why so many & such tricky input problems?

• Many input languages and formats

incl. data formats (URLs, filenames, email addresses, X509, ...),

protocols e.g. in network stack (4G, Bluetooth, TCP/IP, Wifi,

TLS, HTTP, ...), file formats (Word, PDF, HTML, audio/video

formats, JSON, XML, ), script/programming languages (SQL,

OS commands, JavaScript, ...), ...

• Complex input languages and formats

e.g. look at https://html.spec.whatwg.org for HTML or

https://url.spec.whatwg.org and https://www.rfc-

editor.org/rfc/rfc3987 for URLs

• Sloppy definitions of input languages and formats

• Expressive languages and formats

eg. macros in Office formats, SMB protocol for Windows file
names, JavaScript in HTML & PDF, eval()in programming

languages, ...

Some of these factors also explain the success of fuzzing.

33

Audience poll

How should you defend against input problems?

Possibly by input validation

Probably NOT by input sanitisation

It’s a common misunderstanding to think that input validation

and input sanitisation are the best or only defences !

It’s an even more common mistake to confuse sanitisation &

validation!

34

Preventing input handling problems

I. Basic protection primitives:

Validation, Sanitisation, Canonicalisation

II. Tackling buggy parsing with LangSec

III. How (not) to tackle unintended parsing - ie injection flaws

a) Input vs output sanitisation

b) Taint Tracking

c) Safe builders

Case study: XSS

35

I. The three basic protection mechanisms

a) Canonicalisation

b) Validation

c) Sanitisation

36

1. Canonicalisation: normalise inputs to canonical form

 E.g. convert 10-31-2021 to 31/10/2021

 www.ru.nl/ to www.ru.nl

 J.Smith@Gmail.com to jsmith@gmail.com

2. Validation: reject ‘invalid’ inputs

 E.g. reject May 32nd 2024 or negative amounts

3. Sanitisation: fix ‘dangerous’ inputs

 E.g. convert <script> to <script>

 Many synonyms: escaping, encoding, filtering, neutralising, ...

Invalid inputs could be fixed instead of rejected as part of validation.

Which of these operations should be done first?

Canonicalisation, Validation, Sanitisation

37

Beware: validation
& sanitisation are
often confused !

a) Canonicalisation (aka Normalisation)

There may be many ways to write the same thing, eg.

• upper or lowercase letters eg s123456 vs S123456

• trailing spaces eg s123456 vs s123456

• trailing / in a domain name, eg www.ru.nl/

• trailing . in a domain name, eg www.ru.nl.

• ignored characters or sub-strings, eg in email addresses:

name+redundantstring@bla.com

• .. . ~ in path names

• file URLs file://127.0.0.1/c|WINDOWS/clock.avi

• using either / or \ in a URL on Windows

• Unicode encoding eg / encoded as \u002f

Beware: some forms of encoding are not meant as form of sanitisation

38

a) Canonicalisation

• Data should always be put into canonical form

before any further processing, esp.

– before validation

– before using the data in security decisions

• But: the canonicalisation operation itself may be abused,

for instance to waste CPU cycles or memory

– eg with a zip bomb of XML bomb

(Btw: a docx file is a zip file!)

39

b) Validation

Many possible forms of patterns for validations

• Eg. for numbers:

– positive, negative, max. value, possible range?

– Luhn mod 10 check for credit card numbers

• Eg. for strings:

– (dis)allowed characters or words

– More precise: regular expressions or context-free grammars

• Eg for RU student number (s followed by 6 digits), valid email

address, URL, …

Unfortunately, regular expressions and context-free grammars are not

expressive enough for many complex input formats (eg email address, JPG,

PDF,...)

40

b) Validation techniques

• Indirect selection

– Let user choose from a set of legitimate inputs;

User input never used directly by the application

– Most secure, but cannot be used in all situations;

also, attacker may be able to by-pass the user interface to

still enter invalid data, eg by messing with HTTP traffic

• Allow-listing (aka white-listing)

– List valid patterns; accept input if it matches

– Instance of a positive security model

• Deny-listing (aka black-listing)

– List invalid patterns; reject input if it matches

– Least secure, given the big risk that some dangerous

patterns are overlooked

– Instance of a negative security model

41

c) Sanitisation aka encoding

Commonly applied to prevent injection attacks, eg.

• replacing ″ by \″ to prevent SQL injection, aka escaping

• replacing < > by < > to prevent HTML injection & XSS

• replacing script by xxxx to prevent XSS

• putting quotes around an input, aka quoting

• removing dangerous characters or words, aka filtering

NB after sanitising, changed input may need to be re-validated

As for validation, we can use allow-lists or deny-lists for replacing or

removing characters or keywords

42

Validation patterns can get COMPLEX

A regular expression to validate email adressess

See http://emailregex.com for code samples in various languages

Or read RFCs 821, 822, 1035, 1123, 2821, 2822, 3696, 4291, 5321, 5322, and

5952 and try yourself!

43

Parse, don’t validate!

If input validation requires parsing, then parse & don’t just validate!

Eg instead of having a validation function

boolean isValidURL(String s)

we could have a parsing function

URL createURL(String s) throws InvalidURLException

which returns some datatype URL (e.g. an object, record, or struct) that comes

with relevant operations, eg to extract domain, protocol.

Advantages? Disadvantages?

• You cannot forget validation, as then code won’t type check ☺

• No duplication of parsing code ☺ - in validation & subsequent parsing.

• More work, at least initially, to define all these types such as URL

Though maintenance should be easier...

44

Spot the defect

char buf1[MAX_SIZE], buf2[MAX_SIZE];

// make sure url is valid URL and fits in buf1 and buf2:

 if (!isValid(url)) return;

 if (strlen(url) > MAX_SIZE – 1) return;

// copy url excluding spaces, up to first separator, ie. first ’/’, into buf1

 out = buf1;

 do { // skip spaces

 if (*url != ’ ’) *out++ = *url;

 } while (*url++ != ’/’);

 strcpy(buf2, buf1);

[Code sample from presentation by Jon Pincus]

Loop fails to

terminate flaw for

URLs without /

Exploited by

Blaster worm

45

Parse, don't validate?

char buf1[MAX_SIZE], buf2[MAX_SIZE];

// make sure url is valid URL and fits in buf1 and buf2:

if (!isValid(url)) return;

 if (strlen(url) > MAX_SIZE – 1) return;

// copy url excluding spaces, up to first separator, ie. first ’/’, into buf1

 out = buf1;

do { // skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’);

 strcpy(buf2, buf1);

[Code sample from presentation by Jon Pincus]

Why not parse the url into

some URL object/datatype as

part of the isValid() method?

46

The (partial) parsing by

this loop possibly

repeats work done in

isValid()

Sanitisation nightmares: XSS

Many places to include Javascript and many ways to encode

Eg <script language="javascript"> alert('Hi'); </script>

can be injected as

• <body onload=alert('Hi')>

• <b onmouseover=alert('Hi')>Click here!

• <img src="http://some.url.that/does/not/exist"

onerror=alert('Hi');>

•

• <META HTTP-EQUIV="refresh"

CONTENT="0;url=data:text/html;base64,PHNjcmlwdD5hbGVydC

gndGVzdDMnKTwvc2NyaXB0Pg">

Root cause: complexity of HTML format (https://html.spec.whatwg.org)

For a longer lists of XSS evasion tricks, see

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

47

Where to canonicalise, valididate or sanitise:

Best done at clear choke points in an application

48

input input

choke point
for
input check

data flows

input checks
all over
the place

p
r
o
g
r
a
m

Trust boundaries & choke points

Identifying trust boundaries useful to decide where to have

choke points

• in a network, on a computer, or within an application

49

	Slide 1: Software Security Typical security problems, esp. INPUT problems
	Slide 2: Classifications & rankings of security flaws
	Slide 3: OWASP Top Ten
	Slide 4: SANS CWE Top 25 [2021]
	Slide 5: CWE Top 1357 [Nov 2023]
	Slide 6
	Slide 7: CVE, CWE, CRE
	Slide 8: Top n lists of security flaws
	Slide 9: Tackling INPUT problems
	Slide 10: High level observations
	Slide 11: Attack surface for input problems
	Slide 12: Attack surface for input problems
	Slide 13: Terminology
	Slide 14: 2-nd order attacks
	Slide 15: Example: 2nd order SQL injection
	Slide 16: Expect the unexpected!
	Slide 17: Two types of problems: bugs vs features
	Slide 18: Recurring themes: parsing & languages
	Slide 19: Buggy parsing (1)
	Slide 20: Buggy parsing (2)
	Slide 21: Unintended parsing
	Slide 22: Typical injection attack, eg SQLi
	Slide 23: Injection attacks
	Slide 24: LDAP injection
	Slide 25: XPath injection
	Slide 26: Blind injection attacks
	Slide 27: More injection attacks
	Slide 28: More obscure injection attacks on Microsoft Office
	Slide 29: DDE warnings in Office
	Slide 30: SMB relays: Injection attacks via Windows file names
	Slide 31: Eval
	Slide 32: Social Engineering as injection attacks?
	Slide 33: Why so many & such tricky input problems?
	Slide 34: Audience poll
	Slide 35: Preventing input handling problems
	Slide 36: I. The three basic protection mechanisms
	Slide 37: Canonicalisation, Validation, Sanitisation
	Slide 38: a) Canonicalisation (aka Normalisation)
	Slide 39: a) Canonicalisation
	Slide 40: b) Validation
	Slide 41: b) Validation techniques
	Slide 42: c) Sanitisation aka encoding
	Slide 43: Validation patterns can get COMPLEX
	Slide 44: Parse, don’t validate!
	Slide 45: Spot the defect
	Slide 46: Parse, don't validate?
	Slide 47: Sanitisation nightmares: XSS
	Slide 48: Where to canonicalise, valididate or sanitise:
	Slide 49: Trust boundaries & choke points

