
The programming language C

hic 1



The programming language C

• invented by Dennis Ritchie in early 1970s

– who used it to write the first Hello World program

– C was used to write UNIX

• Standardised as

– K&R (Kernighan & Ritchie) C  

– ANSI C aka C90  

– C99 newer ISO standard in 1999

– C11 most recent ISO standard of 2011

• Basis for C++, Objective C, ... and many other languages

NB  C++  is  not a superset  of  C

• Many other variants, eg

MISRA C for safety-critical applications in car industry

hic 2



The programming language C

• C is very powerful, and can be very efficient, because it gives raw 

access to the underlying platform (CPU and memory)

• Downside: C provides less help to the programmer to stay out of 

trouble than other languages.

C is very liberal (eg in its type system)  and does not prevent the 

programmer from questionable practices, which can make it harder 

to debug programs. 

[For example, see the program silly_bool_argument.c]

hic 3



syntax & semantics

A programming language definition consists of

• Syntax

The spelling and grammar rules, which say what ’legal’ 

- or syntactically correct - program texts are.

Syntax is usually defined using a grammar, typing rules, and

scoping rules

• Semantics

The meaning of ’legal’ programs.

Much harder to define!

The semantics of some syntactically correct programs may be left 
undefined (but it is better not do this!)

hic 4



C compilation in more detail

• As first step, the C preprocessor will add and remove code from 
your source file, eg using #include directives and expanding 
macros 

• The compiler then translates programs into object code 

– Object code is almost machine code

– Most compilers can also output assembly code, a human 
readable form of this

• The linker takes several pieces of object code (incl. some of the 
standard libraries) and joins them into one executable which 
contains machine code

– Executables also called binaries

By default  gcc will compile and link

hic 5



What does a C compiler have to do?

1. represent all data types as bytes

2. decide where pieces of data are stored (memory management)

3. translate all operations into the basic instruction set of the CPU

• this includes translating higher-level control structures,

such as if then else, switch statements, for loops,

into jumps (goto)

4. provide some “hooks” so that at runtime the CPU and OS can handle 
function calls

NB function calls have to be handled at runtime, when the compiler is no 
longer around, so this has to be handled by CPU and OS

hic 6



Memory abstraction (1): how data is represented

C provides some data types, and programmer can use these without 

having to know how they are represented  - to some degree.

eg. in C  we can write 

character                      ’a’ 

string                            ”Hello World”   

floating point number    1.345

array of int’s {1,2,3,4,5}

complex number           1.0 + 3.0 * I

hic 7



Memory abstraction (2): where data is stored

The programmer also do not need to know where the data is stored 

(aka allocated) - again to some degree. 

This is called memory management.

At runtime, an int x could be stored

• in a register on the CPU

• in the CPU cache

• in RAM

• on hard disk

Compiler will make some decisions here,  but it’s up to the operating 

system and CPU to do most of this work at runtime

hic 8



Where is data allocated?  &

We can find out where some data is allocated using the & operation.

Suppose we have a variable

int x = 12;

Then &x is the memory address where the value of x is stored, 

aka a pointer to x

Much more on pointers later!

hic 9

12

&x



Where is data allocated? pointers

char x; int i; short s; char y;

printf("x is allocated at %p \n", &x); 

printf("i is allocated at %p \n", &i); 

printf("s is allocated at %p \n", &s); 

printf("y is allocated at %p \n", &y); 

// Here %p is used to print pointer values

hic 10



C data types 

and their representation

hic 11



Computer memory

• The memory can be seen as a sequence of bytes 

• Actually, it is a sequence are n-bytes words

– where n=1, 2,4,8 on 8,16, 32, 64 bit architecture, respectively

• All data is in the end just bytes  

– everything is represented as bytes; not just data, also code

– different data can have the same representation as bytes

• hence  the same byte can have different interpretations, 

depending on the context

– the same piece of data may even have different representations

hic 12



char

The simplest data type in C is char. 

A char is always a byte.

The type char was traditionally used for ASCII characters, 

so char values can be written as numbers or as characters, e.g.

char c = ’2’; 

char d = 2;  

char e = 50;

QUIZ: which of the variables above will be equal?

c and e , as they both have value 50:

the character ’2’ is represented as its ASCII code 50

hic 13



other integral types

C provides several other integral types, of different sizes

• short or short int usually 2 bytes

• int usually 2 or 4 bytes

• long or long int 4 or 8 bytes

• long long 8 bytes or  longer

The exact sizes can vary depending on the platform!

You can use sizeof()to find out the sizes of types, 

eg sizeof(long) or sizeof(x)

Integral values can be written in decimal, hexadecimal (using 0x) or

octal notation (using 0) , where 0 is zero, not O

eg 255 is 0xFF (hexadecimal) or 0177777 (octal)

hic 14



Printing values in different notations 

The procedure printf can print numeric values in different notations.

int j = 15;

printf(”The value of j is %i \n”, j); 

printf(”In octal notation: %o \n”, j); 

printf(”In hexadecimal notation: %x \n”, j);

printf(”Idem with capitals: %X \n”, j); 

Check websites such as cppreference.com for details. 

See course webpage for more links.

hic 15



floating point types

C also provides several floating point types, of different sizes

• float 

• double

• long double 

Again, sizes vary depending on the platform.

The floating point types will probably not be used in this course.

hic 16



signed vs unsigned

Numeric types have signed and unsigned versions

The default is signed - except possibly for char

For example

signed char    can have values   -128 ... 127

unsigned char  can have values     0 ... 255

In these slides, I will assume that  char is by default a signed char

hic 17



register

• Originally, C had a keyword register

register int i;

This would tell the compiler to store this value in a CPU register 

rather than in main memory. The motivation for this would be that 

this variable it is used frequently.

• NB you should never ever use this! Compilers are much better than 

you are at figuring out which data is best stored in CPU registers.

hic 18



stdint.h

Because the bit-size (or width) of standard types such as int and 

long can vary,  there are standard libraries that define types with 

guaranteed sizes.

Eg stdint.h defines

uint16_t for unsigned 16 bit integers

hic 19



implicit type conversions

Values of numeric type will automatically be converted to wider types 

when necessary.

Eg char converts to int, int to float, float to double

char c = 1;

int i = 2;

float f = 3.1415;

double d = i * f; // i converted to float, then

// i * f converted to double

long g = (c*i)+i; // c converted to an int

// then result to a long

What happens if c*i overflows as 32-bit int, but not as 64-bit long? 

My guess is that it’s platform-specific, but maybe the C spec says otherwise?

hic 20



explicit type casts

You can cast a value to another type

int i = 23456;

char c = (char) i;  // drops the higher order bits

float f = 12.345;

i = (int) f;        // drops the fractional part

Such casts can loose precision, but the cast make this explicit.

Question: can c have a negative value after the cast above?

It may have, if the lower 8 bits of 23456 happen to represent a negative 

number, for the representations of  int and char (incl. negative chars) used.

So casts cannot only loose precision, but also change the meaning

hic 21



some implicit conversion can also be dangerous

int i = 23456;

char c = i;

unsigned char s = c;

Is this legal C code? Is the semantics clear?

C compilers do not always warn about dangerous implicit conversions 

which may loose bits or change values!

Conversions between signed and unsigned types do not always give 

intuitive results.

Of course, a good programmer will steer clear of such implicit 

conversions.

hic 22

the compiler might

(should?) complain

that we loose bits

what if c is negative?



Quiz: signed vs unsigned

Conversions between signed and unsigned data types do not always 

behave intuitively

unsigned char x = 128;

signed char y = x; // what will value of y be?

Moral of the story: mixing signed and unsigned data types in one 

program is asking for trouble

hic 23



Representation: two’s complement

• Most platforms represent negative numbers using the two’s 

complement  method. Here the most signification bit represents a 

large negative number  –(2n)

-128        64       32       16       8        4          2         1

So -128 is represented as 1000 0000

-120                         as  1000 0100

and the largest possible signed byte value, 127,

as  0111 1111      

hic 24



Representation: big endian vs little endian

Integral values that span multiple bytes can be represented in two ways

• big endian : most significant byte first

• little endian : least significant byte first (ie backwards)

For example,   a long long x = 1  is  represented as

00 00 00 01     big endian

01 00 00 00     litte endian

Some operations are easier to implement for a big endian

representation, others for little endian.

Little endian may seems strange, but has the advantage that types of 

different lengths can be handled more uniformly

hic 25


