memory management
the stack & the heap

memory management

So far:
data representations:
how are individual data elements represented in memory?

pointers and pointer arithmetic

to find out where data is allocated

Now:
memory management:
how is the memory as a whole organised and managed?

hic

memory segments

high} command line args
The OS allocates memory for each address [-—-=="=""="-=---------
process - ie. a running program — stack
for data and code (grows downwards)
This memory consists of different segments ~
« stack - for local variables unused
— Incl. command line arguments 1/\[
and environment variables "
. _ i eap
heap - for dynamic memory (grows upwards)
« data segment for
— global uninitialised variables (.bss) .bss
— global initialised variables (.data) .data
« code segment
typically read-onl oo
ypically y low (read only)
address

memory segments

On Linux
> cat /proc/<pid>/maps
shows memory regions of process <pid>

With
> ps

you get a listing of all processes,
like the Taskbar in windows

(This is not exam material)

hic

(Aside: real vs virtual memory)

Memory management depends on

high address

capabilities of
1. the hardware and
2. the operating system (OS)

On primitive computers, which can only
run a single process and have no real

OS, the memory of the process may
simply be all the physical memory

Eg, for an old 64K computer

hic

OxFFFF

low address
0x0000

command line args

stack
(grows downwards)

~

unused

>

heap
(grows upwards)

.bss

.data

code

(read only)

(Aside: primitive computers)

These may only run

a single process which
then gets to use all

of the memory

hic

global variables (in .bss and .data)

These are the easy ones for the compiler to deal with.

#include <stdio.h>

long n = 12345;

char *string = "hello world\n";
int a[256];

Here

* the global variables n, string and the string literal “"hello world\n”,
will be allocated in data

« The uninitialised global array a will be allocated in .bss

The segment .bss is initialised to all zeroes. NB this is a rare case where C
will do a default initialisation for the programmer!

hic

the stack

stack, pop, push

A stack (in Dutch: stapel) organises a set of elements
In a Last In, First Out (LIFO) manner

The three basic operations on a stack are
* pushing a new element on the stack
* popping an element from the stack

 checking if the stack is empty E— TN
Push y [FPop

hic

the stack

The stack consists of stack frames aka
activation records, one for each function call,
« allocated when a function is called,

« de-allocated when it returns.

main (int i) {

char *msg ="hello”;
f (msg) ;

}

int f(char *p) {
int j;

return 5;

stack frame
for main()

stack frame
for f()

unused
memory

the stack

On most machines, the stack grows downward
stack frame
for main()

The stack pointer (SP) points to the last element
on the stack
On x86 architectures, the stack pointer is stored
in the ESP (Extended Stack Pointer) register stack frame

for f()

stack pointer >
(ESP)
unused
memory

the stack

Each stack frame provides memory for
e arguments

* the return value

« local variables

of a function, plus some admin stuff .

The frame pointer provides a frame pointer

. . (EBP)
starting point to locate the local
variables, using offsets. stack pointer
On x86 architectures, it is stored in the (ESP)

EBP (Extended Base Pointer) register

previous stack
frame

return value

arguments

admin stuff

local variables

unused
memory

the stack

The admin stuff stored on the stack :
e return address

le where to resume execution after return
e previous frame pointer

to locate previous frame

frame pointer
(EBP)

stack pointer
(ESP)

previous stack
frame

return value

arguments

return address

saved frame pointer

local variables

unused
memory

the stack

_ stack
Stack during call to f inti frame
- for
main(int i) { main
char *msg ="hello”; char *msg
f (msqg) ; N
} int return value
char *p stack
return address - frame
1 *
int f(char *p){ _ saved frame pointer for
int j; frame pointer > — f (msg)
int |
-7 stack pointer >
return 5;
} unused
memory

function calls

When a function is called, a new stack frame is created
— arguments are stored on the stack
— current frame pointer and return address are recorded
— memory for local variables is allocated
— stack pointer is adjusted

When a function returns, the top stack frame is removed
— old frame pointer and return address are restored
— stack pointer is adjusted
— the caller can find the return value, if there is one, on top of the stack

Because of recursion, there may be multiple frames for the same
function on the stack

Note that the variables that are stored in the current stack frame are
precisely the variables that are in scope

hic

security worries

There is no default initialisation for stack variables
— by reading unitialised local variables,
you can read memory content used in earlier function calls

There is only finite stack space

— a function call may fail because there is no more memory
In highly safety- or security-critical code, you may want to ensure that
this cannot happen, or handle it in a safe way when it does.

The stack mixes program data and control data

— by overrunning buffers on the stack we can corrupt the return
addresses!

More on that the next weeks!

16

(Aside: hardware-specific details)

« The precise organisation of the stack depends on the machine
architecture of the CPU

« Instead of storing data on the stack (in RAM)
some data may be stored in a register (in the CPU)

Eg, for efficiency, the top values of the stack may be stored in CPU
registers, or in the CPU cache, or the return value could be stored in a
register instead of on the stack.

hic 17

Example security problem
caused by bad memory management

18

ELECTRONIC THROTTLE CONTROL (ETCS)

“Toyota ETCS-i is an example of a safety-critical hard real-time system.”
- NASA, Appendix A, p. 118

Throttle
Accelerator Pedal Valve
Position Sensors ECM ¢
g s o el
| 4
) Throttle
Throttle Position
Commend Feedback
Select Sensors
1) Padal Input
> am“w »{ Fuelln
Mass Air Flow >) Transeiest > jection
5) Stability Contro!
Other Vehicle > | Fail Safe Modes »| lgnition Coil
&)
NASA, p. 13 B XS BARR
10 DN sroup

http://embeddedgurus.com/state-space/2014/02/are-we-shooting-ourselves-in-the-foot-with-stack-overflow/

swsl 19

STACK ANALYSIS FOR 2005 CAMRY L4

OSEK Data

e
ISR Stack Use

System
Stack

(Basic Tasks
and ISRs)

| Bottqm;

Barr Chapter Regarding
Toyota’s Stack Analysis

25

swsl

+ Recursio

4,096 bytes

94% (vs. the 41% Toyota told NASA!)

Recursion violates a MISRA-C rule
(1998: #70; 2004: #16.2)

| Top)

1,024 bytes

. Bottom

BJS BARR
. group

20

EXAMPLE

OF UNINTENDED ACCELERATION

task death
R

100" set speed
(68 mph)

90 mph
7 ,y/"lp » Representative of task
Y death in real-world

» Dead task also monitors

accelerator pedal, so
loss of throttle control

v' Confirmed in tests

30 second

80 unintended
Wemal acceleration h kiakedtaka » When this task’s death
(blue) e LA 4" (green) begins with brake press

death; no fail

stuck throttle

\(red)

(any amount), driver

must fully remove foot

from brake to end UA
v' Confirmed in tests

safe acts

100

Source: Loudon Vehicle Testing

swsl

BXS BARR
BN sroup

21

140

time (seconds)

