
memory management

the stack & the heap

hic 1

memory management

So far:

data representations:

how are individual data elements represented in memory?

pointers and pointer arithmetic

to find out where data is allocated

Now:

memory management:

how is the memory as a whole organised and managed?

hic 2

memory segments

The OS allocates memory for each

process - ie. a running program –

for data and code

This memory consists of different segments

• stack - for local variables

– incl. command line arguments

and environment variables

• heap - for dynamic memory

• data segment for

– global uninitialised variables (.bss)

– global initialised variables (.data)

• code segment

typically read-only

hic 3

stack

(grows downwards)

heap

(grows upwards)

code

(read only)

.data

.bss

unused

low

address

high

address
command line args

memory segments

On Linux

> cat /proc/<pid>/maps

shows memory regions of process <pid>

With

> ps

you get a listing of all processes,

like the Taskbar in windows

(This is not exam material)

hic 4

(Aside: real vs virtual memory)

Memory management depends on

capabilities of

1. the hardware and

2. the operating system (OS)

On primitive computers, which can only

run a single process and have no real

OS, the memory of the process may

simply be all the physical memory

Eg, for an old 64K computer

hic 5

heap

(grows upwards)

code

(read only)

.data

.bss

unused

low address
0x0000

high address
0xFFFF

stack

(grows downwards)

command line args

(Aside: primitive computers)

hic 6

These may only run

a single process which

then gets to use all

of the memory

global variables (in .bss and .data)

These are the easy ones for the compiler to deal with.

#include <stdio.h>

long n = 12345;

char *string = "hello world\n";

int a[256];

...

Here

• the global variables n, string and the string literal ”hello world\n”,

will be allocated in data

• The uninitialised global array a will be allocated in .bss

The segment .bss is initialised to all zeroes. NB this is a rare case where C

will do a default initialisation for the programmer!

hic 7

the stack

hic 8

stack, pop, push

A stack (in Dutch: stapel) organises a set of elements

in a Last In, First Out (LIFO) manner

The three basic operations on a stack are

• pushing a new element on the stack

• popping an element from the stack

• checking if the stack is empty

hic 9

the stack

The stack consists of stack frames aka

activation records, one for each function call,

• allocated when a function is called,

• de-allocated when it returns.

main(int i){

char *msg =”hello”;

f(msg);

}

int f(char *p){

int j;

..;

return 5;

}

hic 10

stack frame

for main()

unused

memory

stack frame

for f()

the stack

On most machines, the stack grows downward

The stack pointer (SP) points to the last element

on the stack

On x86 architectures, the stack pointer is stored

in the ESP (Extended Stack Pointer) register

hic 11

stack frame

for main()

unused

memory

stack frame

for f()

stack pointer

(ESP)

the stack

Each stack frame provides memory for

• arguments

• the return value

• local variables

of a function, plus some admin stuff .

The frame pointer provides a

starting point to locate the local

variables, using offsets.

On x86 architectures, it is stored in the

EBP (Extended Base Pointer) register

hic 12

previous stack

frame

return value

arguments

admin stuff

local variables

unused

memory

stack pointer

(ESP)

frame pointer

(EBP)

the stack

The admin stuff stored on the stack :

• return address

ie where to resume execution after return

• previous frame pointer

to locate previous frame

hic 13

previous stack

frame

return value

arguments

local variables

unused

memory

stack pointer

(ESP)

frame pointer

(EBP)

saved frame pointer

return address

the stack

Stack during call to f

main(int i){

char *msg =”hello”;

f(msg);

}

int f(char *p){

int j;

..;

return 5;

}

hic 14

int return value

char *p

return address

int j

unused

memory

stack pointer

frame pointer
saved frame pointer

char *msg

stack

frame

for
f(msg)

stack

frame

for
main

int i

function calls

• When a function is called, a new stack frame is created

– arguments are stored on the stack

– current frame pointer and return address are recorded

– memory for local variables is allocated

– stack pointer is adjusted

• When a function returns, the top stack frame is removed

– old frame pointer and return address are restored

– stack pointer is adjusted

– the caller can find the return value, if there is one, on top of the stack

• Because of recursion, there may be multiple frames for the same
function on the stack

• Note that the variables that are stored in the current stack frame are
precisely the variables that are in scope

hic 15

security worries

• There is no default initialisation for stack variables

– by reading unitialised local variables,

you can read memory content used in earlier function calls

• There is only finite stack space

– a function call may fail because there is no more memory

In highly safety- or security-critical code, you may want to ensure that

this cannot happen, or handle it in a safe way when it does.

• The stack mixes program data and control data

– by overrunning buffers on the stack we can corrupt the return

addresses!

More on that the next weeks!

hic 16

(Aside: hardware-specific details)

• The precise organisation of the stack depends on the machine

architecture of the CPU

• Instead of storing data on the stack (in RAM)

some data may be stored in a register (in the CPU)

Eg, for efficiency, the top values of the stack may be stored in CPU

registers, or in the CPU cache, or the return value could be stored in a

register instead of on the stack.

hic 17

Example security problem

caused by bad memory management

hic 18

http://embeddedgurus.com/state-space/2014/02/are-we-shooting-ourselves-in-the-foot-with-stack-overflow/

sws1 19

sws1 20

sws1 21

