Twenty years of
secure software development

Erik Poll
NWA project [NTERSCT.

Radboud University Nijmegen

Early 2000s

IT community realises that (cyber)security is becoming a problem
and software is ‘to blame’

ilew + @ DY X OoRedly WReply oAl WOFomard iSendReceie [BoFnd| S & <« @,
= & = Inbox :
Outlook Shortcuts | Folder List X Look for: « Searchin~> Inbox Find Now
= & Outiook Today - [Personz
S gy A
‘J; @C From: B Gates bag@microsoft com)] To: Mcrosoft Corp and Al FTE com) 2
Outiook Toda: 8 ;:e::sx e Y = 0 A i i
y tams
S Deafts Every few years [have sent out a memo talking about the highest priority for Microsoft. Two years ago, it was the A p e n UJ e b p pl |Cat| D n
Inbox (1) kickoff of our .NET strategy. Before that, it was several memos about the importance of the Internet to our future i i
@ g Jound and the wavs we cnuld make the Internet trulv uceful for neanle. Ouer the last vear it has hacome clear that 8 ecurit I-':J D r D.J ect
Calendar 2 Notes ork. If we
2z Highest priority for Microsoft: .
S founded 2001
%] B ; ounde
Contacts 2 TopCoder -
: e trustworthiness
L) (N} pany - and
Web sites,
Tasks - LN B » driving the
@ « Availability
Notes =
* Securit
@ 2w ways,
[
-
s * Privac
I V y € ground up
these
systems to be available and to secure their information. Trustworthy Ci is © that is as
reliable and secure as electricity, water services and telephony.
Today, in the developed world, we do not worry about electricity and water services being avallable, With
telephony, we rely both on its avallability and its security for conducting highly confidential business transactions
without worrying that information about who we call or what we say will be compromised. Computing falis well
short of this, ranging from the individual user who isn't willing to add a new application because it might
My Shortauts destabilize their system, to a corporation that moves slowly to embrace e-business because today’s platforms don't 3
Other Shor " . RS
50 Items, 46 Unread

—_——

14 start

2002 Email by Bill Gates to all Microsoft employees

Erik Poll Radboud University

Twenty years later

Governments announce regulation for software security

EU Cyber Resilience Act

Q.

For safer & more secure
digital products

NATIONAL
CYBERSECURITY

[r
7

A

“no known exploitable vulnerabilities” STRATEGIC OBJIECTIVE 3.3: SHIFT LiABILITYFOR
INSECURE SOFTWARE PRODUCTS AND SERVICES

Complements NIS2
Broader in scope than RED
(Radio Equipment Directive)

(2023)

Erik Poll Radboud University 3

Ay 1 |
) 5

SAST, SCA, SecrétSc
AR - " ﬁ~"’ . g

Twenty years later: hard to see the forests for the trees

Lots of standards, frameworks, guidelines, tools, Top N lists, ...

» forest of vulnerabilities (CVEs)
with CVSS, KEV, EPSS, CPR, SSVC, ... to navigate it

» forest of vulnerability categories (CWEs)
eg. OWASP Top 10, CWE Top 25, ...

« forest of secure development technologies
eg. SDL, SAMM, BSIMM, NIST SSDF, ...

focused on the process

« forest of security tools
DAST (incl. fuzzing), SAST, SCA, SecretScanning, ...

» forest of security requirements
eg. OWASP ASVS, OWASP SCVS, ...

focused on the product

The process

‘methodologies’

Early 2000s: Secure development methodologies

Open Web Application

Security Project
FTWARE
ECURITY CLASP by OWASP

asson Wity Softeare Secwity Saries o'

How to] S
>robleny S
B

=)

THE SECURITY
DEVELOPMENT

LIFECYCLE

GARY HcERAW

Furemadd by Dai Deed

‘Building Security In’ aka
Cigital Touchpoints by Gary McGraw

SDL by Microsoft (2004)

Erik Poll Radboud University

Key idea:
security activities throughout development lifecycle

Security External Static Penetration
requirements review analysis testing
(tools)
Abuse Risk Risk-based Risk .
cases analysis security tests analysis Security
/ \ l \ breaks

Requirements Design Test Code Test Field
and use cases plans results feedback

> R \\- " R
m Implementation Verification Release

Establish Security Establish Design Use Approved Dynamic Incident
Requirements Requirements Tools Analysis Response Plan

Core Security Create Quality Analyze Attack Deprecate Unsafe Fuzz Final Security
Training Gates / Bug Bars Surface Functions Testing Review

Security & Privacy Threat Static Attack Surface Release
Risk Assessment Modeling Analysis TN Archive

aka SAST

Erik Poll Radboud University

Maturity models for this

Governance Intelligence SSDL Touchpoints " Deployment

Strategy and Metrics Attack Models Architecture Analysis Penetration Testing

Compliance and Policy Security Features Code Review Software Environment

. BSIMM i

Training Standards and Security Testing Configuration Management
Requirements and Vulnerability Manage-

* by Synopsis, since 2009 —

+ lists 126 activities grouped in 12 practices across 4 domains

* to compare methodologies & measure maturity

SAMM Overview
Software
Development
. OWASP SAMM s
Construction Verification

Security Practices

Strategy & Education & Security Design Security Environment
Metrics Guidance Requirements Review Testing Hardening
Policy & Threat Secure Code Vulnerability Operational
Compliance Assessment Architecture Review Management Enablement

Erik Poll Radboud University 9

What’s changed in these methodologies
/n the past 20 years?

New slogans

Shifting Left

attention to security to earlier in the development lifecycle

Security by Design

This does not just mean security in the design phase,
but security ‘on purpose’ in all phases of the development cycle

Security by Default

Erik Poll Radboud University

11

More of the same

Many more methodologies,
all mentioning the same or similar ‘practices’ & ‘activities’

NIST Special Publication 800-218

Secure Software Development
Recent example: NIST SSDF (2022) Framework (SSDF) Version 1.1:

draws from 25 other standards: Recommendations for Mitigating

the Risk of Software Vulnerabilities
Microsoft SDL, BSIMM12, OWASP SAMM,
BSA Framework for Secure Software, IDA SOAR, ISA/IEC 62443,
SafeCode Fundamental Practices For Secure Software Development,
SafeCode SIC, SafeCode TPC, CNCF FSSCP, EO14028,
OWASP ASVS, OWAPS SCVS, PCI SSLC,
NIST IR8397, SP800-52, SP800-160, SP800-161, NIST CSF, NIST LAB, ...

Erik Poll Radboud University 12

How to cope with ever more security standards?

« OWASP OpenCRE initiative provides mappings between

security standards

[https://lwww.opencre.org]

* In 2024 NIST released a methodology for mapping relations between

cybersecurity standards (IR 8477)

Erik Poll

Mapping Relationships Between
Documentary Standards, Regulations,

Frameworks, and Guidelines
Developing Cybersecurity and Privacy Concept Mappings

Karen Scarfone Michael Fagan
Scarfone Cybersecurity Applied Cybersecurity Division
infarmation Technology Loboratory
Murugiah Souppaya
Computer Security Division
information Technology Laobaratory

This publication Is avallsble free of charge from:
https:/fdol.org/10.6028/NISTIR.E87T

February 2024

U5 Deparement =f Cxmmere=
Cma M. Azmandn, Scecfary

Lawriz £, Loemaria, ST Diresfar snd Unser Sesreiary of Comemeres for Sinnsfarty and Tochasisgy

Radboud University

13

What’s changed in software engineering
/n the past 20 years?

1. Agile & DevOps

Security methodologies typically use waterfall model —~~ - =«
as frame of reference .\\ A \ T I\./

Static

How can we cope with Agile or DevOps?
We cannot do pen-test for every new feature or weekly release

No new activities, but changes in when & how often to do them
And: more important to shift left! Eq.
« use DAST and - further to the left - SAST

» train developers
* integrate SAST & DAST into CD/CI pipelines

With DevSecOps as new buzzword

Erik Poll Radboud University 15

2. Code repositories

Lots of code reuse from code repositories
github, Maven, PyPi,

New attack vector: supply chain attacks
Eg Log4dJ, SolarWinds, XZ utils

New countermeasures

1) SCA (Software Composition Analysis)
static analysis tools to check software supply chain for CVEs

2) SBOM (Software Bill of Materials)
Required by US executive Order 14028 (May 2021)

And more standards: OWASP SCVS, SafeCode Third Party Components, ...

Erik Poll Radboud University

16

3. ‘Services’

Software increasingly built using (cloud-based) services
instead of libraries as components
with SaaS, Service-Oriented Architectures, micro-services, cloud APIs

This introduces

e more attack surface
 need for authentication to cloud APlIs

New security risk: leaking credentials
(JWT tokens, AWS security tokens, ...)

New countermeasures:
1) SAST tools for secret scanning, eg TruffleHog
2) first proposals for SaaSBOMs

Erik Poll Radboud University 17

The product

as opposed to the process

‘guidelines’ & ‘standards’

Security advice for the software product

Methodologies & tools need to be fed with more concrete advice:

« Lists of common vulnerabilities — ant~guidelines
Eg. OWASP Top 10, CWE Top 25, KEV Top 10, ...

* Also Mobile Top 10, APl Top 10, Top 10 for LLM applications, ...

« Coding guidelines
Eg. SEI/CERT guidelines for C, C++, Java, Perl, Android, ...

« Standards with security requirements & controls

« OWASP ASVS (Application Security Verification Standard)
» CIP-overheid.nl ‘Grip op SSD’ normen

that can be used as metric, as guidance, or in procurement
« Design patterns for security

Eg. Secure Builders for secure input handling

Erik Poll Radboud University

19

From don’ts to dos

Turning Top N lists of common flaws (dont’s)

into more constructive guidance (dos)

@DLUF]SD | Standard

e OWASP Application Security
Verification Standard (ASVS) oSCVS

Software Component
Verification Standard

CIP centrum informatiebeveiliging
“ en privacybescherming

Grip op Secure Software
Development (SSD)
Beveiligingseisen

Erik Poll Radboud University

Typical security flaws
OWASP Top 10 (201771 CWE TOP 25 [2022] CWE TOP 1000

1. Injection 1 Out-of-bounds Write
2 Cross-site Scripting
T 3 SAQL Injection
2. Broken Authentication
4 Improper Input Validation
3. Sensitive Data Exposure g 8?:;;::;‘::%8&(2%0"
7 Use After Free
4. XML External Entities (XXE) 8 Path Traversal
9 Cross-Site Request Forgery (CSRF)
5. Broken Access Control 10 Unrestricted Upload of File with Dangerous Type
11 NULL Pointer Dereference
6. Security Misconfiguration 12 Deserialization of Untrusted Data
13 Integer Overflow or Wraparound
7. Cross-Site Scripting (XSS) 14 Improper Authentication

15 Use of Hard-coded Credentials

16 Missing Authorization

17 Command Injection

18 Missing Authentication for Critical Function

19 Improper Restriction of Bounds of Memory Buffer

8. Insecure Deserialization

9. Using Components with

Known Vulnerabilities 20 Incorrect Default Permissions
21 Server-Side Request Forgery (SSRF)
10. Insufficient 22 Race Condition
Logging & Monitoring 23 Uncontrolled Resource Consumption
24 Improper Restriction of XML External Entity
Reference

25 Code Injection

Erik Poll Radboud University

The big 3

Three big families of security problems: CWE TOP 25 [2024]

©CONOOADWN-=-

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Erik Poll Radboud University

Cross-site Scripting

Out-of-bounds Write

SQL Injection

Cross-Site Request Forgery (CSRF)
Path Traversal

Out-of-bounds Read

OS Command Injection

Use After Free

Missing Authorization

Upload of File with Dangerous Type
Code Injection

Improper Input Validation

Command Injection

Improper Authentication

Improper Privilege Management
Deserialization of Untrusted Data
Exposure of Sensitive Data
Incorrect Authorization

Server-Side Request Forgery (SSRF)
Improper Restriction of Operation in Buffer Bounds
NULL pointer deference

Use of Hard-coded Credentials
Integer Overflow

Uncontrolled Resource Consumption
Missing Authentication

22

The big 3

CWE TOP 25 [2024]

Three big families of security problems:

1) memory corruption

Erik Poll Radboud University

CEoONOO b WN -~

Cross-site Scripting

Out-of-bounds Write

SQL Injection

Cross-Site Request Forgery (CSRF)
Path Traversal

Out-of-bounds Read

OS Command Injection

Use After Free

Missing Authorization

Upload of File with Dangerous Type
Code Injection

Improper Input Validation
Command Injection

Improper Authentication

Improper Privilege Management
Deserialization of Untrusted Data
Exposure of Sensitive Data
Incorrect Authorization

Server-Side Request Forgery (SSRF)

Improper Restriction of Operation in Buffer Bounds

NULL pointer deference
Use of Hard-coded Credentials
Integer Overflow

Uncontrolled Resource Consumption

Missing Authentication

23

The big 3

CWE TOP 25 [2024]

Three big families of security problems:

1) memory corruption

2) input handling, esp.
* injection attacks

 improper input validation

Erik Poll Radboud University

EoNOO b WN =~

Cross-site Scripting

Out-of-bounds Write

SQL Injection

Cross-Site Request Forgery (CSRF)
Path Traversal

Out-of-bounds Read

OS Command Injection

Use After Free

Missing Authorization

Upload of File with Dangerous Type
Code Injection

Improper Input Validation
Command Injection

Improper Authentication

Improper Privilege Management
Deserialization of Untrusted Data
Exposure of Sensitive Data
Incorrect Authorization

Server-Side Request Forgery (SSRF)

Improper Restriction of Operation in Buffer Bounds

NULL pointer deference

Use of Hard-coded Credentials
Integer Overflow

Uncontrolled Resource Consumption
Missing Authentication

The big 3

CWE TOP 25 [2024]

Three big families of security problems:

1) memory corruption

2) input handling, esp.
* injection attacks

 improper input validation

3) access control, incl.

. authentication flaws
. authorisation flaws

« insufficient logging &
monitoring

Erik Poll Radboud University

CooNOO b WIN =

Cross-site Scripting

Out-of-bounds Write

SQL Injection

Cross-Site Request Forgery (CSRF)
Path Traversal

Out-of-bounds Read

OS Command Injection

Use After Free

Missing Authorization

Upload of File with Dangerous Type
Code Injection

Improper Input Validation
Command Injection

Improper Authentication

Improper Privilege Management
Deserialization of Untrusted Data
Exposure of Sensitive Data
Incorrect Authorization

Server-Side Request Forgery (SSRF)

Improper Restriction of Operation in Buffer Bounds

NULL pointer deference
Use of Hard-coded Credentials
Integer Overflow

Uncontrolled Resource Consumption

Missing Authentication

25

Memory corruption bugs

Tackling memory corruption bugs has been dismal failure

170
90%
80%
T0%
60%
50%

% of CVEs

40%
30%
20%
10%

0%
2006 2007 2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018

memory safety vs non-memory safety bugs at Microsoft

Only solution: move to memory safe languages, eg Rust

In Feb 2025 CISA & FBI declared memory corruption bugs as unforgivable bugs

Erik Poll Radboud University 26

Erik Poll

; § SN TRALAN
A ShALS
- o= BRECTORATE
T B LCSC
A M D AT IV D B

Bl IR, SUNSS. NRNIOOLY) emon g
Canscion Corems Conve camton T 1 Securty Cante Security Centro
for OyberDeserty oour be cyborndcatd Vs ok 54

The Case for Memory Safe
Roadmaps

Why Both C-Suite Executives and Technical Experts
Need to Take Memory Safe Coding Seriously

Publication: December 2023

United States Cybersecurity and Infrastructure Security Agency
United States National Security Agency

United States Federal Bureau of Investigation

Australian Signals Directorate’s Australian Cyber Security Centre
Canadian Centre for Cyber Security

United Kingdom National Cyber Security Centre

New Zealand National Cyber Security Cantre

Computer Emergency Response Team New Zealand

Radboud University

27

Input handling problems

« Common mistake: seeing input validation as the only or best solution.
Output encoding & safer APls may be better!

« Most input handling problems are FARS'"G problems

a) buggy & insecure parsing of complex data formats.
Eg buffer overflows in Flash, PDF, or OpenVPN parsers

b) unintended parsing leading to injection attacks
Eg user data being parsed as SQL command

Aggrevated by many, complex, poorly defined data formats/input languages
« We can structurally tackle these by
a) LangSec: clearer specs of input formats & generated parser code

b) safer APls where API & type system prevent misinterpretation

Eg Google re-engineered Trusted Types DOM API to prevent XSS

Erik Poll Radboud University

28

2003

Unvalidated
Input

Broken Access
Control

Broken Auth. &

Session Mngt.

Buffer
Overflows

Injection

Improper Error
Handling

Insecure
Storage

Denial of
Service

Evolution of the OWASP Top 10

2007

XSS

Injection

Malicious File
Execution

CSRF

Info Leakage &
Improper Error
Handling

Broken Auth. &
Session Mngt.

Insecure
Cryptographic
Storage

Failure to
restrict URL
access

2010

Injection

XSS

Broken Auth. &

Session Mngt

Security

Misconfiguration

Insecure
Cryptographic
Storage

Failure to
restrict URL
access

Unvalidated
Redirects and
Forwards

2013

Injection

Broken Auth. &
Session Mngt

Security
Misconfiguration

Sensitive Data
Exposure

Missing function
level access
control

CSRF

Components
with known
vulnerabilities

Unvalidated
Redirects and
Forwards

2017

Injection

Broken
Authentication

Sensitive Data
Exposure

Broken Access

Control

Security

Misconfiguration

XSS

Insecure
Deserialisation

Components
with known
vulnerabilities

Insufficient

Logging &
Monitoring

2021

Broken Access

Control

Cryptographic
Failures

Injection

Vulnerable &
outdated
components

Identification &

Authentication
Failures

Software & Data
Integrity Failures

Insufficient

Logging &
Monitoring

SSRF

29

2003

Unvalidated
Input

Broken Access
Control

Broken Auth. &
Session Mngt.

XSS

Buffer
Overflows

Injection

Improper Error
Handling

Insecure
Storage

Denial of
Service

Insecure
Configuration
Management

Evolution of the OWASP Top 10

2007

XSS

Injection

Malicious File
Execution

IDOR

CSRF

Info Leakage &
Improper Error
Handling

Broken Auth. &
Session Mngt.

Insecure
Cryptographic
Storage

Insecure
Communication

Failure to
restrict URL
access

2010

Injection

XSS

Broken Auth. &
Session Mngt

IDOR

CSRF

Security
Misconfiguration

Insecure
Cryptographic
Storage

Failure to
restrict URL
access

Insecure
Transport Layer

Unvalidated
Redirects and
Forwards

2013

Injection

Broken Auth. &
Session Mngt

XSS

IDOR

Security
Misconfiguration

Sensitive Data
Exposure

Missing function
level access
control

CSRF

Components
with known
vulnerabilities

Unvalidated
Redirects and
Forwards

2017

Injection

Broken
Authentication

Sensitive Data
Exposure

XXE :=!!=

Broken Access
Control

Security
Misconfiguration

XSS

Insecure %

Deserialisation

Components
with known
vulnerabilities

Insufficient
Logging &
Monitoring

2021

Broken Access
Control

Cryptographic
Failures

Injection

Insecure
Design

Security

Misconfiguration

Vulnerable &
outdated
components

Identification &
Authentication
Failures

Software & Data
Integrity Failures

Insufficient
Logging &
Monitoring

SSRF %

30

200}
Unvalid

Input

Broken Access
Control

Broken Auth. &
Session Mngt.

XSS

Buffer m

Overflows

Injection

Improper Error
Handling

Insecure
Storage

Denial of
Service

Insecure
Configuration
Management

Evolution of the OWASP Top 10

2007

XSS

Injection

Malicious File
Execution

IDOR

CSRF

Info Leakage &
Improper Error
Handling

Broken Auth. &
Session Mngt.

Insecure
Cryptographic
Storage

Insecure
Communication

Failure to
restrict URL
access

2010

Injection

XSS

Broken Auth. &
Session Mngt

IDOR

CSRF

Security
Misconfiguration

Insecure
Cryptographic
Storage

Failure to
restrict URL
access

Insecure
Transport Layer

Unvalidated
Redirects and
Forwards

2013

Injection

Broken Auth. &
Session Mngt

XSS

IDOR

Security
Misconfiguration

Sensitive Data
Exposure

Missing function
level access
control

CSRF

Components
with known
vulnerabilities

Unvalidated
Redirects and
Forwards

2017

Injection

Broken
Authentication

Sensitive Data
Exposure

XXE

Broken Access
Control

Security
Misconfiguration

XSS

Insecure
Deserialisation

Components
with known
vulnerabilities

Insufficient
Logging &
Monitoring

Broken Access
Control

Cryptographic
Failures

Injection

Insecure
Design

Security
Misconfiguration

Vulnerable &
outdated
components

Identification &
Authentication
Failures

Software & Data
Integrity Failures

Insufficient
Logging &
Monitoring

SSRF

31

2003

Unvalidated
Input

Broken Access
Control

Broken Auth. &
Session Mngt.

XSS

Buffer
Overflows

Injection

Improper Error
Handling

Insecure
Storage

Denial of
Service

Insecure
Configuration
Management

Evolution of the OWASP Top 10

2007

XSS

Injection

Malicious File
Execution

IDOR

CSRF

Info Leakage &
Improper Error
Handling

Broken Auth. &
Session Mngt.

Insecure
Cryptographic
Storage

Insecure
Communication

Failure to
restrict URL
access

2010

Injection

XSS

Broken Auth. &
Session Mngt

IDOR

CSRF

Security
Misconfiguration

Insecure
Cryptographic
Storage

Failure to
restrict URL
access

Insecure
Transport Layer

Unvalidated
Redirects and
Forwards

2013

Injection

Broken Auth. &
Session Mngt

XSS

IDOR

Security
Misconfiguration

Sensitive Data
Exposure

Missing function
level access
control

CSRF

Components
with known
vulnerabilities

Unvalidated
Redirects and
Forwards

2017

Injection

Broken
Authentication

Sensitive Data
Exposure

XXE

Broken Access
Control

Security
Misconfiguration

XSS

Insecure
Deserialisation

Components
with known
vulnerabilities

Insufficient
Logging &
Monitoring

Broken Access
Control

Cryptographic
Failures

Injection

Insecure
Design

Security
Misconfiguration

Vulnerable &
outdated
components

Identification &
Authentication
Failures

Software & Data
Integrity Failures

Insufficient
Logging &
Monitoring

SSRF

32

Conclusions

We know how to make software more secure

just use one of the many secure development methodologies
and try to shift left

But: lots of ‘unforgivable bugs still common

CISA and FBI Release Secure by Design Alert to
Urge Manufacturers to Eliminate Directory
Traversal Vulnerabilities Release Date: May 02,2024

Tackling security is an ongoing process that will never be finished

In 2024, over 20 years after their initial software security initiative
Microsoft signed up to CISA’s Security-by-Design pledge

America’s Cyber Defense Agency
NATIONAL COORDINATOR FOR CRITICAL INFRASTRUCTURE SECURITY AND RESILIENCE

SECURE BY DESIGN

PLEDGE

Erik Poll Radboud University {,>>)

Shifting down and shifting right

 The best way to shift left: shift down
ie. address security lower in the technology stack API

Eg. - memory-safe programming languages like Rust
- safer APIs that are less injection-prone
- session management frameworks that resists CSRF

« But shifting right is also important
ie. detect & react to security incidents

Eg. having a SOC or deploying EDR

Erik Poll Radboud University

34

The ‘good’ news

Software exploits no longer main root cause in some areas

« Exploit malware vs phishing sites detected by Google

80000

60000

40000

\

I\

@ Malware

@ Phishing

\

\ /1\/

[Source: Safe Browsing/

/\\ Google Transparency Report]

\/

AN

0

\
X

A D

7

S—

2010

2012 2014

2016

2018

* Internet banking losses in the Netherlands

40
30
20
10

0

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

= malware = phishing

Erik Poll

total
[Source: Betaalvereniging]

Radboud University 35

	Slide 1: Twenty years of secure software development
	Slide 2: Early 2000s
	Slide 3: Twenty years later
	Slide 4: Twenty years later: hard to see the forests for the trees
	Slide 5: Twenty years later: hard to see the forests for the trees
	Slide 6: The process ‘methodologies’
	Slide 7: Early 2000s: Secure development methodologies
	Slide 8: Key idea: security activities throughout development lifecycle
	Slide 9: Maturity models for this
	Slide 10: What’s changed in these methodologies in the past 20 years?
	Slide 11: New slogans
	Slide 12: More of the same
	Slide 13: How to cope with ever more security standards?
	Slide 14: What’s changed in software engineering in the past 20 years?
	Slide 15: 1. Agile & DevOps
	Slide 16: 2. Code repositories
	Slide 17: 3. ‘Services’
	Slide 18: The product as opposed to the process ‘guidelines’ & ‘standards’
	Slide 19: Security advice for the software product
	Slide 20: From don’ts to dos
	Slide 21: Typical security flaws
	Slide 22: The big 3
	Slide 23: The big 3
	Slide 24: The big 3
	Slide 25: The big 3
	Slide 26: Memory corruption bugs
	Slide 27
	Slide 28: Input handling problems
	Slide 29: Evolution of the OWASP Top 10
	Slide 30: Evolution of the OWASP Top 10
	Slide 31: Evolution of the OWASP Top 10
	Slide 32: Evolution of the OWASP Top 10
	Slide 33: Conclusions
	Slide 34: Shifting down and shifting right
	Slide 35: The ‘good’ news

