
Twenty years of

secure software development

Erik Poll

NWA project .

Radboud University Nijmegen

Radboud University

Early 2000s

IT community realises that (cyber)security is becoming a problem

and software is ‘to blame’

Erik Poll 2

Highest priority for Microsoft:

... trustworthiness ...

• Availability

• Security

• Privacy

founded 2001

2002 Email by Bill Gates to all Microsoft employees

Twenty years later

Governments announce regulation for software security

3

Complements NIS2

Broader in scope than RED

 (Radio Equipment Directive)

(2023)

Erik Poll Radboud University

“no known exploitable vulnerabilities”

Twenty years later: hard to see the forests for the trees

Lots of standards, frameworks, guidelines, tools, Top N lists, ...

• forest of vulnerabilities (CVEs)
 with CVSS, KEV, EPSS, CPR, SSVC, ... to navigate it

• forest of vulnerability categories (CWEs)

 eg. OWASP Top 10, CWE Top 25 , ...

• forest of secure development technologies
 eg. SDL, SAMM, BSIMM, NIST SSDF, ...

 focused on the process

• forest of security tools

 DAST (incl. fuzzing), SAST, SCA, SecretScanning, ...

• forest of security requirements
 eg. OWASP ASVS, OWASP SCVS, ...

 focused on the product

• ...

4

Twenty years later: hard to see the forests for the trees

Lots of standards, frameworks, guidelines, tools, Top N lists, ...

• forest of vulnerabilities (CVEs)
 with CVSS, KEV, EPSS, CPR, SSVC, ... to navigate it

• forest of vulnerability categories (CWEs)

 eg. OWASP Top 10, CWE Top 25 , ...

• forest of secure development technologies
 eg. SDL, SAMM, BSIMM, NIST SSDF, ...

 focused on the process

• forest of security tools

 DAST (incl. fuzzing), SAST, SCA, SecretScanning, ...

• forest of security requirements
 eg. OWASP ASVS, OWASP SCVS, ...

 focused on the product

• ...

5

The process

‘methodologies’

Early 2000s: Secure development methodologies

7

SDL by Microsoft (2004)

`Building Security In’ aka

Cigital Touchpoints by Gary McGraw

CLASP by OWASP

Erik Poll Radboud University

Key idea:

security activities throughout development lifecycle

8Erik Poll Radboud University

aka SAST

aka DAST

Maturity models for this

• BSIMM

• by Synopsis, since 2009

• lists 126 activities grouped in 12 practices across 4 domains

• to compare methodologies & measure maturity

• OWASP SAMM

Radboud University Erik Poll 9

What’s changed in these methodologies

in the past 20 years?

New slogans

• Shifting Left

 attention to security to earlier in the development lifecycle

• Security by Design

This does not just mean security in the design phase,

 but security ‘on purpose’ in all phases of the development cycle

• Security by Default

11Erik Poll Radboud University

More of the same

Many more methodologies,

all mentioning the same or similar ‘practices’ & ‘activities’

Recent example: NIST SSDF (2022)

draws from 25 other standards:

Microsoft SDL, BSIMM12, OWASP SAMM,

BSA Framework for Secure Software, IDA SOAR, ISA/IEC 62443,

SafeCode Fundamental Practices For Secure Software Development,

SafeCode SIC, SafeCode TPC, CNCF FSSCP, EO14028,

OWASP ASVS, OWAPS SCVS, PCI SSLC,

NIST IR8397, SP800-52, SP800-160, SP800-161, NIST CSF, NIST LAB, ...

Radboud University Erik Poll 12

How to cope with ever more security standards?

• OWASP OpenCRE initiative provides mappings between

security standards [https://www.opencre.org]

• In 2024 NIST released a methodology for mapping relations between

cybersecurity standards (IR 8477)

Radboud University Erik Poll 13

What’s changed in software engineering

in the past 20 years?

1. Agile & DevOps

Security methodologies typically use waterfall model

 as frame of reference

How can we cope with Agile or DevOps?

 We cannot do pen-test for every new feature or weekly release

No new activities, but changes in when & how often to do them

And: more important to shift left! Eg.

• use DAST and – further to the left – SAST

• train developers

• integrate SAST & DAST into CD/CI pipelines

With DevSecOps as new buzzword

15Erik Poll Radboud University

2. Code repositories

Lots of code reuse from code repositories

 github, Maven, PyPi,

New attack vector: supply chain attacks

 Eg Log4J, SolarWinds, XZ utils

New countermeasures

1) SCA (Software Composition Analysis)
static analysis tools to check software supply chain for CVEs

2) SBOM (Software Bill of Materials)
Required by US executive Order 14028 (May 2021)

And more standards: OWASP SCVS, SafeCode Third Party Components, ...

16Erik Poll Radboud University

3. ‘Services’

Software increasingly built using (cloud-based) services
 instead of libraries as components

with SaaS, Service-Oriented Architectures, micro-services, cloud APIs

This introduces

• more attack surface

• need for authentication to cloud APIs

New security risk: leaking credentials

 (JWT tokens, AWS security tokens, ...)

New countermeasures:

 1) SAST tools for secret scanning, eg TruffleHog

 2) first proposals for SaaSBOMs

17Erik Poll Radboud University

The product
as opposed to the process

‘guidelines’ & ‘standards’

Security advice for the software product

Methodologies & tools need to be fed with more concrete advice:

• Lists of common vulnerabilities – anti-guidelines

Eg. OWASP Top 10, CWE Top 25, KEV Top 10, ...

• Also Mobile Top 10, API Top 10, Top 10 for LLM applications, ...

• Coding guidelines

Eg. SEI/CERT guidelines for C , C++, Java, Perl, Android, ...

• Standards with security requirements & controls

• OWASP ASVS (Application Security Verification Standard)

• CIP-overheid.nl ‘Grip op SSD’ normen

that can be used as metric, as guidance, or in procurement

• Design patterns for security

Eg. Secure Builders for secure input handling

Radboud University Erik Poll 19

From don’ts to dos

Turning Top N lists of common flaws (dont’s)

into more constructive guidance (dos)

Radboud University Erik Poll 20

Typical security flaws

Radboud University Erik Poll 21

OWASP Top 10 [2017]

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with

Known Vulnerabilities

10. Insufficient

Logging & Monitoring

CWE TOP 25 [2022]

1 Out-of-bounds Write

2 Cross-site Scripting

3 SQL Injection

4 Improper Input Validation

5 Out-of-bounds Read

6 OS Command Injection

7 Use After Free

8 Path Traversal

9 Cross-Site Request Forgery (CSRF)

10 Unrestricted Upload of File with Dangerous Type

11 NULL Pointer Dereference

12 Deserialization of Untrusted Data

13 Integer Overflow or Wraparound

14 Improper Authentication

15 Use of Hard-coded Credentials

16 Missing Authorization

17 Command Injection

18 Missing Authentication for Critical Function

19 Improper Restriction of Bounds of Memory Buffer

20 Incorrect Default Permissions

21 Server-Side Request Forgery (SSRF)

22 Race Condition

23 Uncontrolled Resource Consumption

24 Improper Restriction of XML External Entity

Reference

25 Code Injection

CWE TOP 1000

The big 3

Three big families of security problems:

Radboud University Erik Poll 22

CWE TOP 25 [2024]

 1 Cross-site Scripting

 2 Out-of-bounds Write

 3 SQL Injection

 4 Cross-Site Request Forgery (CSRF)

 5 Path Traversal

 6 Out-of-bounds Read

 7 OS Command Injection

 8 Use After Free

 9 Missing Authorization

10 Upload of File with Dangerous Type

11 Code Injection

12 Improper Input Validation

13 Command Injection

14 Improper Authentication

15 Improper Privilege Management

16 Deserialization of Untrusted Data

17 Exposure of Sensitive Data

18 Incorrect Authorization

19 Server-Side Request Forgery (SSRF)

20 Improper Restriction of Operation in Buffer Bounds

21 NULL pointer deference

22 Use of Hard-coded Credentials

23 Integer Overflow

24 Uncontrolled Resource Consumption

25 Missing Authentication

The big 3

Three big families of security problems:

1) memory corruption

Radboud University Erik Poll 23

CWE TOP 25 [2024]

 1 Cross-site Scripting

2 Out-of-bounds Write

 3 SQL Injection

 4 Cross-Site Request Forgery (CSRF)

 5 Path Traversal

6 Out-of-bounds Read

 7 OS Command Injection

8 Use After Free

 9 Missing Authorization

10 Upload of File with Dangerous Type

11 Code Injection

12 Improper Input Validation

13 Command Injection

14 Improper Authentication

15 Improper Privilege Management

16 Deserialization of Untrusted Data

17 Exposure of Sensitive Data

18 Incorrect Authorization

19 Server-Side Request Forgery (SSRF)

20 Improper Restriction of Operation in Buffer Bounds

21 NULL pointer deference

22 Use of Hard-coded Credentials

23 Integer Overflow

24 Uncontrolled Resource Consumption

25 Missing Authentication

The big 3

Three big families of security problems:

1) memory corruption

2) input handling, esp.

• injection attacks

• improper input validation

Radboud University Erik Poll 24

CWE TOP 25 [2024]

1 Cross-site Scripting

2 Out-of-bounds Write

3 SQL Injection

 4 Cross-Site Request Forgery (CSRF)

5 Path Traversal

6 Out-of-bounds Read

7 OS Command Injection

8 Use After Free

 9 Missing Authorization

10 Upload of File with Dangerous Type

11 Code Injection

12 Improper Input Validation

13 Command Injection

14 Improper Authentication

15 Improper Privilege Management

16 Deserialization of Untrusted Data

17 Exposure of Sensitive Data

18 Incorrect Authorization

19 Server-Side Request Forgery (SSRF)

20 Improper Restriction of Operation in Buffer Bounds

21 NULL pointer deference

22 Use of Hard-coded Credentials

23 Integer Overflow

24 Uncontrolled Resource Consumption

25 Missing Authentication

The big 3

Three big families of security problems:

1) memory corruption

2) input handling, esp.

• injection attacks

• improper input validation

3) access control, incl.

• authentication flaws

• authorisation flaws

• insufficient logging &

 monitoring

Radboud University Erik Poll 25

CWE TOP 25 [2024]

1 Cross-site Scripting

2 Out-of-bounds Write

3 SQL Injection

4 Cross-Site Request Forgery (CSRF)

5 Path Traversal

6 Out-of-bounds Read

7 OS Command Injection

8 Use After Free

9 Missing Authorization

10 Upload of File with Dangerous Type

11 Code Injection

12 Improper Input Validation

13 Command Injection

14 Improper Authentication

15 Improper Privilege Management

16 Deserialization of Untrusted Data

17 Exposure of Sensitive Data

18 Incorrect Authorization

19 Server-Side Request Forgery (SSRF)

20 Improper Restriction of Operation in Buffer Bounds

21 NULL pointer deference

22 Use of Hard-coded Credentials

23 Integer Overflow

24 Uncontrolled Resource Consumption

25 Missing Authentication

Memory corruption bugs

Tackling memory corruption bugs has been dismal failure

Only solution: move to memory safe languages, eg Rust

In Feb 2025 CISA & FBI declared memory corruption bugs as unforgivable bugs

Radboud University Erik Poll 26

memory safety vs non-memory safety bugs at Microsoft

Radboud University Erik Poll 27

Input handling problems

• Common mistake: seeing input validation as the only or best solution.

Output encoding & safer APIs may be better!

• Most input handling problems are parsing problems

a) buggy & insecure parsing of complex data formats.

Eg buffer overflows in Flash, PDF, or OpenVPN parsers

b) unintended parsing leading to injection attacks

Eg user data being parsed as SQL command

Aggrevated by many, complex, poorly defined data formats/input languages

• We can structurally tackle these by

a) LangSec: clearer specs of input formats & generated parser code

b) safer APIs where API & type system prevent misinterpretation

Eg Google re-engineered Trusted Types DOM API to prevent XSS

Radboud University Erik Poll 28

Evolution of the OWASP Top 10

29

Unvalidated

Input
XSS Injection InjectionInjection

Broken Access

Control

Broken Access

Control
Injection XSS

Broken

Authentication

Broken Auth. &

Session Mngt

Cryptographic

Failures

Broken Auth. &

Session Mngt.

Malicious File

Execution

Broken Auth. &

Session Mngt

Sensitive Data

Exposure
XSS Injection

XSS IDOR IDOR IDOR
Insecure

Design

Buffer

Overflows
CSRF CSRF

Broken Access

Control

Injection

Info Leakage &

Improper Error

Handling

Security

Misconfiguration
Sensitive Data

Exposure

Vulnerable &

outdated

components

Improper Error

Handling

Broken Auth. &

Session Mngt.

Insecure

Cryptographic

Storage
XSS

Missing function

level access

control

Identification &

Authentication

Failures

Insecure

Storage

Insecure

Cryptographic

Storage

Failure to

restrict URL

access

Insecure

Deserialisation
CSRF

Software & Data

Integrity Failures

Insecure

Communication

Insecure

Transport Layer

Components

with known

vulnerabilities

Components

with known

vulnerabilities

Insufficient

Logging &

Monitoring

Insecure

Configuration

Management

Failure to

restrict URL

access

Unvalidated

Redirects and

Forwards

Insufficient

Logging &

Monitoring

Unvalidated

Redirects and

Forwards

SSRF

XXE

Security

Misconfiguration

Security

Misconfiguration

Security

Misconfiguration

Evolution of the OWASP Top 10

30

Unvalidated

Input
XSS Injection InjectionInjection

Broken Access

Control

Broken Access

Control
Injection XSS

Broken

Authentication

Broken Auth. &

Session Mngt

Cryptographic

Failures

Broken Auth. &

Session Mngt.

Malicious File

Execution

Broken Auth. &

Session Mngt

Sensitive Data

Exposure
XSS Injection

XSS IDOR IDOR IDOR
Insecure

Design

Buffer

Overflows CSRF CSRF
Broken Access

Control

Injection

Info Leakage &

Improper Error

Handling

Security

Misconfiguration
Sensitive Data

Exposure

Vulnerable &

outdated

components

Improper Error

Handling

Broken Auth. &

Session Mngt.

Insecure

Cryptographic

Storage
XSS

Missing function

level access

control

Identification &

Authentication

Failures

Insecure

Storage

Insecure

Cryptographic

Storage

Failure to

restrict URL

access

Software & Data

Integrity Failures

Insecure

Communication

Insecure

Transport Layer

Components

with known

vulnerabilities

Components

with known

vulnerabilities

Insufficient

Logging &

Monitoring

Insecure

Configuration

Management

Failure to

restrict URL

access

Unvalidated

Redirects and

Forwards

Insufficient

Logging &

Monitoring

Unvalidated

Redirects and

Forwards

SSRF

Security

Misconfiguration

Security

Misconfiguration

CSRF
Insecure

Deserialisation

XXE

Security

Misconfiguration

Evolution of the OWASP Top 10

31

Unvalidated

Input
XSS Injection InjectionInjection

Broken Access

Control

Broken Access

Control
Injection XSS

Broken

Authentication

Broken Auth. &

Session Mngt

Cryptographic

Failures

Broken Auth. &

Session Mngt.

Malicious File

Execution

Broken Auth. &

Session Mngt

Sensitive Data

Exposure
XSS Injection

XSS IDOR IDOR IDOR
Insecure

Design

Buffer

Overflows CSRF CSRF
Broken Access

Control

Injection

Info Leakage &

Improper Error

Handling

Security

Misconfiguration
Sensitive Data

Exposure

Vulnerable &

outdated

components

Improper Error

Handling

Broken Auth. &

Session Mngt.

Insecure

Cryptographic

Storage
XSS

Missing function

level access

control

Identification &

Authentication

Failures

Insecure

Storage

Insecure

Cryptographic

Storage

Failure to

restrict URL

access

Insecure

Deserialisation

Software & Data

Integrity Failures

Insecure

Communication

Insecure

Transport Layer

Components

with known

vulnerabilities

Components

with known

vulnerabilities

Insufficient

Logging &

Monitoring

Insecure

Configuration

Management

Failure to

restrict URL

access

Unvalidated

Redirects and

Forwards

Insufficient

Logging &

Monitoring

Unvalidated

Redirects and

Forwards

SSRF

XXE

Security

Misconfiguration

Security

Misconfiguration

Security

Misconfiguration

CSRF

Evolution of the OWASP Top 10

32

Unvalidated

Input
XSS Injection InjectionInjection

Broken Access

Control

Broken Access

Control
Injection XSS

Broken

Authentication

Broken Auth. &

Session Mngt

Cryptographic

Failures

Broken Auth. &

Session Mngt.

Malicious File

Execution

Broken Auth. &

Session Mngt

Sensitive Data

Exposure
XSS Injection

XSS IDOR IDOR IDOR
Insecure

Design

Buffer

Overflows CSRF CSRF
Broken Access

Control

Injection

Info Leakage &

Improper Error

Handling

Security

Misconfiguration
Sensitive Data

Exposure

Vulnerable &

outdated

components

Improper Error

Handling

Broken Auth. &

Session Mngt.

Insecure

Cryptographic

Storage
XSS

Missing function

level access

control

Identification &

Authentication

Failures

Insecure

Storage

Insecure

Cryptographic

Storage

Failure to

restrict URL

access

Insecure

Deserialisation

Software & Data

Integrity Failures

Insecure

Communication

Insecure

Transport Layer

Components

with known

vulnerabilities

Components

with known

vulnerabilities

Insufficient

Logging &

Monitoring

Insecure

Configuration

Management

Failure to

restrict URL

access

Unvalidated

Redirects and

Forwards

Insufficient

Logging &

Monitoring

Unvalidated

Redirects and

Forwards

SSRF

XXE

Security

Misconfiguration

Security

Misconfiguration

Security

Misconfiguration

CSRF

Conclusions

We know how to make software more secure

just use one of the many secure development methodologies

and try to shift left

But: lots of ‘unforgivable bugs still common

Tackling security is an ongoing process that will never be finished

 In 2024, over 20 years after their initial software security initiative

 Microsoft signed up to CISA’s Security-by-Design pledge

Radboud University Erik Poll 33

Shifting down and shifting right

• The best way to shift left: shift down

 ie. address security lower in the technology stack API

Eg. - memory-safe programming languages like Rust

 - safer APIs that are less injection-prone

 - session management frameworks that resists CSRF

• But shifting right is also important

 ie. detect & react to security incidents

 Eg. having a SOC or deploying EDR

Radboud University Erik Poll 34

The ‘good’ news

Software exploits no longer main root cause in some areas

• Exploit malware vs phishing sites detected by Google

 [Source: Safe Browsing/

 Google Transparency Report]

• Internet banking losses in the Netherlands

 [Source: Betaalvereniging]

[Slide by Christiaan Brand, BlackHat 2019; data from Google Transparency Report]

35Erik Poll Radboud University

	Slide 1: Twenty years of secure software development
	Slide 2: Early 2000s
	Slide 3: Twenty years later
	Slide 4: Twenty years later: hard to see the forests for the trees
	Slide 5: Twenty years later: hard to see the forests for the trees
	Slide 6: The process ‘methodologies’
	Slide 7: Early 2000s: Secure development methodologies
	Slide 8: Key idea: security activities throughout development lifecycle
	Slide 9: Maturity models for this
	Slide 10: What’s changed in these methodologies in the past 20 years?
	Slide 11: New slogans
	Slide 12: More of the same
	Slide 13: How to cope with ever more security standards?
	Slide 14: What’s changed in software engineering in the past 20 years?
	Slide 15: 1. Agile & DevOps
	Slide 16: 2. Code repositories
	Slide 17: 3. ‘Services’
	Slide 18: The product as opposed to the process ‘guidelines’ & ‘standards’
	Slide 19: Security advice for the software product
	Slide 20: From don’ts to dos
	Slide 21: Typical security flaws
	Slide 22: The big 3
	Slide 23: The big 3
	Slide 24: The big 3
	Slide 25: The big 3
	Slide 26: Memory corruption bugs
	Slide 27
	Slide 28: Input handling problems
	Slide 29: Evolution of the OWASP Top 10
	Slide 30: Evolution of the OWASP Top 10
	Slide 31: Evolution of the OWASP Top 10
	Slide 32: Evolution of the OWASP Top 10
	Slide 33: Conclusions
	Slide 34: Shifting down and shifting right
	Slide 35: The ‘good’ news

