
Security Testing of Stateful Systems

Erik Poll

joint work with several PhD & MSc students

Digital Security group

Radboud University, Nijmegen, the Netherlands

Overview

1. Wider context: LangSec

2. State machine learning as form of security testing

3. More general forms of fuzzing for stateful systems

Erik Poll 2

1. LangSec (Language-Theoretic Security)

3

LangSec

Important root cause of security problems:

overly complex, expressive, poorly specified, ambiguous, input languages

(aka formats, protocols,...)

Eg PDF, JPEG, Word, Bluetooth, TCP/IP, TLS, 5G,

Sergey Bratus & Meredith Patterson

‘The science of insecurity’ CCC 2012

http://www.youtube.com/watch?v=3kEfedtQVOY

4

Typical bug categories

OWASP Top 10 [2017]

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with

Known Vulnerabilities

10. Insufficient

Logging & Monitoring

CWE TOP 25 [2022]

1 Out-of-bounds Write

2 Cross-site Scripting

3 SQL Injection

4 Improper Input Validation

5 Out-of-bounds Read

6 OS Command Injection

7 Use After Free

8 Path Traversal

9 Cross-Site Request Forgery (CSRF)

10 Unrestricted Upload of File with Dangerous Type

11 NULL Pointer Dereference

12 Deserialization of Untrusted Data

13 Integer Overflow or Wraparound

14 Improper Authentication

15 Use of Hard-coded Credentials

16 Missing Authorization

17 Command Injection

18 Missing Authentication for Critical Function

19 Improper Restriction of Bounds of Memory Buffer

20 Incorrect Default Permissions

21 Server-Side Request Forgery (SSRF)

22 Race Condition

23 Uncontrolled Resource Consumption

24 Improper Restriction of XML External Entity Reference

25 Code Injection

5

CWE TOP 1000
CWE-14

Compiler Removal of Code to Clear Buffers

CWE-20 ☉
Improper Input Validation

CWE-22 ☉
Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

CWE-23 ☉
Relative Path Traversal

CWE-24 ☉
Path Traversal: '../filedir'

CWE-25 ☉
Path Traversal: '/../filedir'

CWE-26 ☉
Path Traversal: '/dir/../filename'

CWE-27 ☉
Path Traversal: 'dir/../../filename'

CWE-28 ☉
Path Traversal: '..\filedir'

CWE-29 ☉
Path Traversal: '\..\filename'

CWE-30 ☉
Path Traversal: '\dir\..\filename'

CWE-31 ☉
Path Traversal: 'dir\..\..\filename'

CWE-32 ☉
Path Traversal: '...' (Triple Dot)

CWE-33 ☉
Path Traversal: '....' (Multiple Dot)

CWE-34 ☉
Path Traversal: '....//'

CWE-35 ☉
Path Traversal: '.../...//'

CWE-36 ☉
Absolute Path Traversal

CWE-37 ☉
Path Traversal: '/absolute/pathname/here'

CWE-38 ☉
Path Traversal: '\absolute\pathname\here'

CWE-39 ☉
Path Traversal: 'C:dirname'

CWE-40 ☉
Path Traversal: '\\UNC\share\name\' (Windows UNC Share)

CWE-41 ☉
Improper Resolution of Path Equivalence

CWE-51 ☉
Path Equivalence: '/multiple//internal/slash'

CWE-55 ☉
Path Equivalence: '/./' (Single Dot Directory)

CWE-57 ☉
Path Equivalence: 'fakedir/../realdir/filename'

CWE-59 ☉
Improper Link Resolution Before File Access ('Link Following')

CWE-61
UNIX Symbolic Link (Symlink) Following

CWE-62
UNIX Hard Link

CWE-73
External Control of File Name or Path

CWE-74
Improper Neutralization of Special Elements in Output Used by a Downstream Component('Injection')

CWE-75
Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CWE-76
Improper Neutralization of Equivalent Special Elements

CWE-77
Improper Neutralization of Special Elements used in a Command ('Command Injection')

CWE-78
Improper Neutralization of Special Elements used in an OS Command ('OS CommandInjection')

CWE-79
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-88
Argument Injection or Modification

CWE-89
Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

CWE-90
Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')

CWE-91
XML Injection (aka Blind XPath Injection)

CWE-93
Improper Neutralization of CRLF Sequences ('CRLF Injection')

CWE-94
Improper Control of Generation of Code ('Code Injection')

CWE-95
Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

CWE-96
Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

CWE-97
Improper Neutralization of Server-Side Includes (SSI) Within a Web Page

CWE-99
Improper Control of Resource Identifiers ('Resource Injection')

CWE-114
Process Control

CWE-116
Improper Encoding or Escaping of Output

CWE-117
Improper Output Neutralization for Logs

CWE-123
Write-what-where Condition

CWE-134
Use of Externally-Controlled Format String

CWE-135
Incorrect Calculation of Multi-Byte String Length

CWE-138
Improper Neutralization of Special Elements

CWE-140
Improper Neutralization of Delimiters

CWE-141
Improper Neutralization of Parameter/Argument Delimiters

CWE-142
Improper Neutralization of Value Delimiters

CWE-143
Improper Neutralization of Record Delimiters

CWE-144
Improper Neutralization of Line Delimiters

CWE-145
Improper Neutralization of Section Delimiters

CWE-146
Improper Neutralization of Expression/Command Delimiters

CWE-147
Improper Neutralization of Input Terminators

CWE-148
Improper Neutralization of Input Leaders

CWE-149
Improper Neutralization of Quoting Syntax

CWE-150
Improper Neutralization of Escape, Meta, or Control Sequences

CWE-151
Improper Neutralization of Comment Delimiters

CWE-152
Improper Neutralization of Macro Symbols

CWE-153
Improper Neutralization of Substitution Characters

CWE-154
Improper Neutralization of Variable Name Delimiters

CWE-155
Improper Neutralization of Wildcards or Matching Symbols

CWE-156
Improper Neutralization of Whitespace

CWE-157
Failure to Sanitize Paired Delimiters

CWE-158
Improper Neutralization of Null Byte or NUL Character

CWE-159
Failure to Sanitize Special Element

CWE-160
Improper Neutralization of Leading Special Elements

CWE-161
Improper Neutralization of Multiple Leading Special Elements

CWE-162
Improper Neutralization of Trailing Special Elements

CWE-163
Improper Neutralization of Multiple Trailing Special Elements

CWE-164
Improper Neutralization of Internal Special Elements

CWE-165
Improper Neutralization of Multiple Internal Special Elements

CWE-166
Improper Handling of Missing Special Element

CWE-167
Improper Handling of Additional Special Element

CWE-168
Improper Handling of Inconsistent Special Elements

CWE-172
Encoding Error

CWE-173
Improper Handling of Alternate Encoding

CWE-174
Double Decoding of the Same Data

CWE-175
Improper Handling of Mixed Encoding

CWE-176
Improper Handling of Unicode Encoding

CWE-177
Improper Handling of URL Encoding (Hex Encoding)

CWE-178
Improper Handling of Case Sensitivity

CWE-179
Incorrect Behavior Order: Early Validation

CWE-180
Incorrect Behavior Order: Validate Before Canonicalize

CWE-181
Incorrect Behavior Order: Validate Before Filter

CWE-182
Collapse of Data into Unsafe Value

CWE-184 ☉
Incomplete Blacklist

CWE-185
Incorrect Regular Expression

CWE-186
Overly Restrictive Regular Expression

CWE-187
Partial Comparison

CWE-188 ☉
Reliance on Data/Memory Layout

CWE-200
Information Exposure

CWE-201
Information Exposure Through Sent Data

CWE-203
Information Exposure Through Discrepancy

CWE-204
Response Discrepancy Information Exposure

CWE-209
Information Exposure Through an Error Message

CWE-210
Information Exposure Through Self-generated Error Message

CWE-211
Information Exposure Through Externally-generated Error Message

CWE-212
Improper Cross-boundary Removal of Sensitive Data

CWE-215
Information Exposure Through Debug Information

CWE-216
Containment Errors (Container Errors)

CWE-227 ☉
Improper Fulfillment of API Contract ('API Abuse')

CWE-241
Improper Handling of Unexpected Data Type

CWE-252
Unchecked Return Value

CWE-253
Incorrect Check of Function Return Value

CWE-273
Improper Check for Dropped Privileges

CWE-311
Missing Encryption of Sensitive Data

CWE-319
Cleartext Transmission of Sensitive Information

CWE-354
Improper Validation of Integrity Check Value

CWE-364 ◄
Signal Handler Race Condition

CWE-365 ◄
Race Condition in Switch

CWE-374
Passing Mutable Objects to an Untrusted Method

CWE-375
Returning a Mutable Object to an Untrusted Caller

CWE-378
Creation of Temporary File With Insecure Permissions

CWE-379
Creation of Temporary File in Directory with Incorrect Permissions

CWE-390
Detection of Error Condition Without Action

CWE-391
Unchecked Error Condition

CWE-394
Unexpected Status Code or Return Value

CWE-405 ◄
Asymmetric Resource Consumption (Amplification)

CWE-406
Insufficient Control of Network Message Volume (Network Amplification)

CWE-407 ☉
Algorithmic Complexity

CWE-408 ◄
Incorrect Behavior Order: Early Amplification

CWE-409
Improper Handling of Highly Compressed Data (Data Amplification)

CWE-410
Insufficient Resource Pool

CWE-412 ◄
Unrestricted Externally Accessible Lock

CWE-413 ◄
Improper Resource Locking

CWE-414 ◄
Missing Lock Check

CWE-430
Deployment of Wrong Handler

CWE-431
Missing Handler

CWE-432 ◄
Dangerous Signal Handler not Disabled During Sensitive Operations

CWE-447 ☉
Unimplemented or Unsupported Feature in UI

CWE-453
Insecure Default Variable Initialization

CWE-454
External Initialization of Trusted Variables or Data Stores

CWE-455
Non-exit on Failed Initialization

CWE-456
Missing Initialization of a Variable

CWE-460
Improper Cleanup on Thrown Exception

CWE-462
Duplicate Key in Associative List (Alist)

CWE-463
Deletion of Data Structure Sentinel

CWE-464
Addition of Data Structure Sentinel

CWE-470
Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

CWE-472
External Control of Assumed-Immutable Web Parameter

CWE-474 ☉
Use of Function with Inconsistent Implementations

CWE-479 ◄
Signal Handler Use of a Non-reentrant Function

CWE-488 ◄
Exposure of Data Element to Wrong Session

CWE-489 ☉
Leftover Debug Code

CWE-493 ☉
Critical Public Variable Without Final Modifier

CWE-494
Download of Code Without Integrity Check

CWE-496
Public Data Assigned to Private Array-Typed Field

CWE-497
Exposure of System Data to an Unauthorized Control Sphere

CWE-498 ☉
Cloneable Class Containing Sensitive Information

CWE-500 ☉
Public Static Field Not Marked Final

CWE-502 ☉
Deserialization of Untrusted Data

CWE-506 ☉
Embedded Malicious Code

CWE-507 ☉
Trojan Horse

CWE-508
Non-Replicating Malicious Code

CWE-509 ☉
Replicating Malicious Code (Virus or Worm)

CWE-510
Trapdoor

CWE-511 ☉
Logic/Time Bomb

CWE-512 ☉
Spyware

CWE-524 ☉
Information Exposure Through Caching

CWE-526
Information Exposure Through Environmental Variables

CWE-538
File and Directory Information Exposure

CWE-539 ☉
Information Exposure Through Persistent Cookies

CWE-543 ◄
Use of Singleton Pattern Without Synchronization in a Multithreaded Context

CWE-544
Missing Standardized Error Handling Mechanism

CWE-546 ☉
Suspicious Comment

CWE-548 ☉
Information Exposure Through Directory Listing

CWE-584
Return Inside Finally Block

CWE-587
Assignment of a Fixed Address to a Pointer

CWE-591
Sensitive Data Storage in Improperly Locked Memory

CWE-595
Comparison of Object References Instead of Object Contents

CWE-598
Information Exposure Through Query Strings in GET Request

CWE-605
Multiple Binds to the Same Port

CWE-622 ☉
Improper Validation of Function Hook Arguments

CWE-636 ☉
Not Failing Securely ('Failing Open')

CWE-637 ☉
Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

CWE-638
Not Using Complete Mediation

CWE-641
Improper Restriction of Names for Files and Other Resources

CWE-643
Improper Neutralization of Data within XPath Expressions ('XPath Injection')

CWE-652
Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')

CWE-663 ◄
Use of a Non-reentrant Function in a Concurrent Context

CWE-664
Improper Control of a Resource Through its Lifetime

CWE-666 ☉
Operation on Resource in Wrong Phase of Lifetime

CWE-674 ☉
Uncontrolled Recursion

CWE-688
Function Call With Incorrect Variable or Reference as Argument

CWE-694
Use of Multiple Resources with Duplicate Identifier

CWE-754
Improper Check for Unusual or Exceptional Conditions

CWE-759
Use of a One-Way Hash without a Salt

CWE-761
Free of Pointer not at Start of Buffer

CWE-765 ◄
Multiple Unlocks of a Critical Resource

CWE-767
Access to Critical Private Variable via Public Method

CWE-773 ◄
Missing Reference to Active File Descriptor or Handle

CWE-774 ◄
Allocation of File Descriptors or Handles Without Limits or Throttling

CWE-777
Regular Expression without Anchors

CWE-785
Use of Path Manipulation Function without Maximum-sized Buffer

CWE-789
Uncontrolled Memory Allocation

ONE main bug category: input handling

More in particular: Parsing of input is dangerous

Garbage In, Garbage Out

 becomes Malicious Garbage In, Security Incident Out

 or Garbage In, Evil Out

6

application
malicious input

I/O

Parsing of many languages in many places

Parsing aka decoding, interpreting or processing

Input languages aka protocols or file/data formats

7

HTML

renderer

pdf

viewer

Ethernet

TCP/IP

HTTP

TLS

Wifi / 4G / 5G

TCP/IP

HTTP

TLS

Application

database

OS

file system

JavaScript

engine

graphics

library

Two sub-categories: 1) bugs & 2) features

8

(abuse of) a feature !
2. Injection Flaws

back-end

service

malicious

input application

a bug !
application

malicious

input

1. Processing Flaws

eg. buffer overflow in

PDF or JPG viewer

eg. SQL injection, XSS,

Word Macros

Or 1) insecure parsing and 2) unintended parsing

9

(abuse of) a feature !
2. Unintended parsing

back-end

service

malicious

input application

a bug !
application

malicious

input

1. Insecure, buggy parsing

eg. buffer overflow in

PDF or JPG viewer

eg. SQL injection, XSS,

Word Macros

LangSec: tackling buggy parsing

Adding input validation is not the (best) solution,

• as we are only adding another parser

More structural ‘LangSec’ solutions to address root causes

1. Provide clear, formal spec of input language

ideally as regular expression or (E)BNF grammar

2. Generate parser code

using a parser generator tool

3. Separate parsing (of raw bytes and strings into some structured datatype)

from subsequent processing (of that structured data)

See langsec.org

10

application

p
a

rs
e

r

Tackling unintended parsing

• Using more specific data types instead of strings

• different types to distinguish different formats

• eg URL vs file name

• to distinguish different trust levels

• eg compile-time constants and escaped input

vs raw user input

Exemplified by

Google’s Trusted Type API

11
[Erik Poll, Strings considered harmful, USENIX :login; 2019]

2. State machine learning for security

12

Many protocols not only involves a language of input messages

but also a notion of session, ie. sequence of messages

• Most specs only describe the happy flow…

• For security, getting unhappy flows correct is crucial

• Fortunately, we can extract state machines from

implementations using state machine inference aka active

learning using just black box testing

Sessions, i.e. sequences of inputs

13

Active Learning aka State Machine Inference

Just try out many sequences of inputs, and observe outputs

Eg. suppose input A results in output X

• If second input A results in different output Y

• If second input A results in the same output X

Now try more sequences of inputs with A, B, C, ...

to e.g. infer

The inferred Mealy machine is an under-approximation of real system

L* algorithm [Angluin 1987], implemented (in improved form) in e.g. LearnLib

14

A/X

A/X

A/X A/Y

B/error

A/X B/Y C/X

A/error A/error

B/error

Case study: EMV

• Most banking smartcards implement a variant of EMV

• EMV = Europay-Mastercard-Visa

• Specification in 4 books totalling > 700 pages

• Contactless payments: another 7 books with > 2000 pages

15

http://www.google.nl/imgres?imgurl=http://blog.italki.com/wp-content/uploads/2009/10/jcb_logo_13.jpg&imgrefurl=http://blog.italki.com/2009/10/jcb%25E3%2582%25AB%25E3%2583%25BC%25E3%2583%2589%25E3%2581%258C%25E3%2581%2594%25E5%2588%25A9%25E7%2594%25A8%25E3%2581%2584%25E3%2581%259F%25E3%2581%25A0%25E3%2581%2591%25E3%2582%258B%25E3%2582%2588%25E3%2581%2586%25E3%2581%25AB%25E3%2581%25AA%25E3%2582%258A%25E3%2581%25BE%25E3%2581%2597%25E3%2581%259F%25EF%25BC%2581-italki/&usg=__KaST-tLomeNZuPHd3Vj35XTa5y8=&h=164&w=164&sz=6&hl=nl&start=2&itbs=1&tbnid=SLevQLEQ-rqtXM:&tbnh=98&tbnw=98&prev=/images%3Fq%3Djcb%2Bcredit%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.clinicdirector.com/Images/mastercard_logo.jpg&imgrefurl=http://www.clinicdirector.com/registration.php&usg=__DfMSWlRDGBitLl47dUVNwO01CrE=&h=374&w=591&sz=97&hl=nl&start=3&itbs=1&tbnid=eVLa94tuirmjcM:&tbnh=85&tbnw=135&prev=/images%3Fq%3Dmastercard%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://www.casinoportaal.net/casino/staatscasino/visa.png&imgrefurl=http://www.casinoportaal.net/casino/staatscasino/&usg=__1Ld2zuR6JQCL37eOjSCbg-Q9Cjw=&h=503&w=800&sz=19&hl=nl&start=1&itbs=1&tbnid=E7U-FAmcMAMVPM:&tbnh=90&tbnw=143&prev=/images%3Fq%3Dvisa%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1
http://www.google.nl/imgres?imgurl=http://banks.com/blogs/credit/wp-content/uploads/2008/07/105_american_express.jpg&imgrefurl=http://www.banks.com/blogs/credit/category/american-express-credit-cards/&usg=__kBKGAPm2h-XfXbnQVt5_k3rhrhw=&h=381&w=522&sz=92&hl=nl&start=3&itbs=1&tbnid=0cb-EeGvS4KE-M:&tbnh=96&tbnw=131&prev=/images%3Fq%3Damerican%2Bexpress%26hl%3Dnl%26gbv%3D2%26tbs%3Disch:1

State machine inference of card

16

State machine inference of card

17

merging arrows

with identical

response

State machine inference of card

18

merging arrows with

same start & end state

We found no bugs, but lots of variety between cards.

[Fides Aarts et al., Formal models of bank cards for free, SECTEST 2013]

Using state machines for comparison

Are both implementations correct & secure? Or compatible?

19

Volksbank Maestro

implementation

Rabobank Maestro

implementation

Using state machine for security analysis

20

Which actions are guarded by PIN check?

State machines inferred for flawed & patched device

[Georg Chalupar, Stefan Peherstorfer, Erik Poll,

Joeri de Ruiter, Automated reverse engineering
using Lego, WOOT 2014]

Movie at http://tinyurl/legolearn

State machine inference of banking tokens

State machine of Gemalto internet banking device

24

Would you trust this to be secure?

Did designers of Gemalto SWYS (Sign What

You See) really intend all this complexity?

Complete inferred state machine

State machine inference of TLS implementation

25

All implementations we analysed are different!

Why doesn’t the TLS spec include a state machine?

[Joeri de Ruiter and Erik Poll, Protocol state fuzzing of TLS implementations, Usenix Security 2015]

State machine inference of SSH implementations

Modelchecker NuSMV used to verify that Inferred models

meet requirements stated in the RFC specs,

by expressing these requirements in temporal logic.

[Paul Fiterau-Brostean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits Vaandrager and Patrick Verleg,

Model Learning and Model Checking of SSH Implementations, SPIN 2017]

26

Typical prose specifications: SSH 

Quote from the RFCs defining SSH:

“Once a party has sent a SSH_MSG_KEXINIT message for key exchange or re-exchange,
until it has sent a SSH_MSG_NEWKEYS message,
it MUST NOT send any messages other than:

• Transport layer generic messages (1 to 19) (but SSH_MSG_ SERVICE_REQUEST and
SSH_MSG_SERVICE_ACCEPT MUST NOT be sent);

• Algorithm negotiation messages (20 to 29) (but further SSH_MSG KEXINIT messages
MUST NOT be sent);

• Specific key exchange method messages (30 to 49).

The provisions of Section 11 apply to unrecognised messages”

Understanding state machines from prose is hard!

This is another instance of the issues raised by LangSec: poor, informal
specification of input formats

[Erik Poll, Joeri de Ruiter and Aleksy Schubert, Protocol state machines and session languages,
LangSec 2015]

27

There is some progress: TLS 1.3 [RFC 8446]

29

3. Fuzzing of stateful systems
(work in progress)

30

Stateful fuzzing

• State machine inference is a limited form of fuzzing:

it does not use strange/malformed input messages,

but only strange sequences of normal input messages

• Given the success of fuzzing, how can we combine this with fuzzing

for fuzzing stateful systems?

• Note: fuzzing is successful because of the problems signalled by LangSec

• Not only for cryptographic protocols!

• In fact, fuzzing cryptographic protocols is hard,

as it requires a custom test harness that is labour-intensive to make

Erik Poll 31

Survey of fuzzers for stateful systems [ArXiv:2301.02490]

There are many fuzzers around, but not that many for stateful systems

7 categories of stateful fuzzers

• Using different combinations of white box, grey box, black box

• Some infer a state machine,

using active or passive learning

Open questions:

• What are the optimal combinations?

• Should implementations be made “fuzzer-friendly”?

[Cristian Daniele, Seyed Andarzian, Erik Poll, Fuzzers for stateful systems: Survey and
Research Directions, ArXiv:2301.02490, 2023] 32

Conclusions

• Most security flaws are input processing flaws

• These flaws arise in parsing of many input languages / formats

1) buggy/insecure parsing or 2) unintended parsing

• LangSec identifies root causes and points to structural solutions

• Particular case of input format: sequence of messages in a protocol

• We can automatically extract state machine of such behaviour using

state machine learning (aka active learning)

• State machine learning is limited form of fuzzing.

How can we best fuzz stateful systems?

Should protocols be implemented in a fuzzer-friendly way?

Also use passive learning using FlexFringe? [Verwer & Hammerschidt, 2022

arXiv2203.16331]

Erik Poll 33

	Slide 1: Security Testing of Stateful Systems
	Slide 2: Overview
	Slide 3: 1. LangSec (Language-Theoretic Security)
	Slide 4: LangSec
	Slide 5: Typical bug categories
	Slide 6: ONE main bug category: input handling
	Slide 7: Parsing of many languages in many places
	Slide 8: Two sub-categories: 1) bugs & 2) features
	Slide 9: Or 1) insecure parsing and 2) unintended parsing
	Slide 10: LangSec: tackling buggy parsing
	Slide 11: Tackling unintended parsing
	Slide 12: 2. State machine learning for security
	Slide 13: Sessions, i.e. sequences of inputs
	Slide 14: Active Learning aka State Machine Inference
	Slide 15: Case study: EMV
	Slide 16: State machine inference of card
	Slide 17: State machine inference of card
	Slide 18: State machine inference of card
	Slide 19: Using state machines for comparison
	Slide 20: Using state machine for security analysis
	Slide 21: State machine inference of banking tokens
	Slide 22
	Slide 23
	Slide 24: State machine of Gemalto internet banking device
	Slide 25: State machine inference of TLS implementation
	Slide 26: State machine inference of SSH implementations
	Slide 27: Typical prose specifications: SSH 
	Slide 28
	Slide 29: There is some progress: TLS 1.3 [RFC 8446]
	Slide 30: 3. Fuzzing of stateful systems (work in progress)
	Slide 31: Stateful fuzzing
	Slide 32: Survey of fuzzers for stateful systems [ArXiv:2301.02490]
	Slide 33: Conclusions

