
Twenty years

of

secure software development

Erik Poll

Digital Security

Radboud University Nijmegen

A brief history of software security: January 2002

 https://news.microsoft.com/2012/01/11/memo-from-bill-gates/

4

Highest priority for Microsoft:

... trustworthiness ...

• Availability

• Security

• Privacy

Erik Poll Radboud University

Flaws found in Microsoft’s first security bug fix month

37%

20%

26%

17%

0%

buffer overflow

input validation

code defect

design defect

crypto

Twenty years later

EU & US announce regulation for software security

https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act

https://www.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy

6

(Sept 2022: proposed regulation

to complement NIS2 framework)

(May 2023)

Erik Poll Radboud University

Software Security

• Software is the cause of cybersecurity problems

• Software security = everything we can do to reduce or manage

the risks of security problems involving software

• covers all aspects of software engineering (from requirement

engineering & initial design to static analysis, testing, monitoring &

patching), programming languages, ‘platforms’ / tech stacks,

protocols, APIs, ...

• aka AppSec (Application Security),

but AppSec can have narrower meaning

7Erik Poll Radboud University

Early 2000s

8

Microsoft SDL (2004)

`Building Security In’ aka

Cigital Touchpoints

Gary McGraw

BSIMM by Synopsis

CLASP and SAMM by OWASP

Erik Poll Radboud University

McGraw’s Touchpoints

9

[Gary McGraw, Software security, Security & Privacy Magazine, IEEE, Vol 2, No. 2, pp. 80-83, 2004.]

Security activities throughout the software development life cycle (SDLC)

Erik Poll Radboud University

Microsoft SDL

4Erik Poll Radboud University

OWASP OpenSAMM

11

12 security practices in 4 business functions

Erik Poll Radboud University

BSIMM (Building Security In Maturity Model)

12

https://www.bsimm.com/framework/

12 practices across 4 domains, subdivided into 100 activities

Erik Poll Radboud University

BSIMM to compare security maturity

13Erik Poll Radboud University

Software security in slogans

• Security by Design: thinking of security from the start

• But: we will never foresee or prevent all security problems

• Shifting Left: tackling security earlier

• eg. not (only) relying on pen-testing but (also) having security tests

or even static analysis to catch problems

• Shifting Down: tackling security lower in the tech stack

• moving from C/C++ to Rust

• using a web framework for session management instead of making

your own

• using ‘safe’ APIs instead of injection-prone APIs (more later)

• LangSec to tackle root causes of insecure input handling (more later)

14Erik Poll Radboud University

What has changed in software engineering

in the past 20 years?

15Erik Poll Radboud University

What’s changed? More acronyms

• SAST: static application security testing

static analysis to catch security flaws

• DAST: dynamic application security testing

testing to catch security flaws

• IAST: interactive application security testing

(tool-supported) penetration testing

• RASP: runtime application self-protection

instrumentation to detect weird things at runtime

16Erik Poll Radboud University

Many more methodologies, frameworks, and guidelines

Most methodologies for secure software lifecycles are very similar

Arina Kudriavtseva & Olga Gadyatskaya of Leiden University recently compared

28 of them [arXiv:2211.16987, 2022]

More concrete ‘guidelines’ to supplement such methodologies

include

OWASP ASVS (Application Security Verification Requirements)

NIST SP 800-218 SSDF (Secure Software Development Framework)

Hard to see the forest for the trees!

• OWASP OpenCRE by a.o. Rob van der Veer of SIG in Amsterdam is

recent initiative to relate entries between methodologies, guidelines

and standards [https://www.opencre.org]

Radboud University Erik Poll 17

What’s changed? Agile & DevOps

All approaches for secure SDLC use waterfall model as

frame of reference

• How can we cope with Agile development?
You cannot use pen-testers for every new feature...

• Hence: more important to shift left!
Eg using SAST & DAST. And train developers to give them

more security expertise?

• How can we cope with DevOps ?
You cannot hire pen-testers or run tests for every new release...

• Hence: even more important to shift left!
Eg integrate SAST (& DAST?) into CD/CI pipelines

• Some proposals for DevSecOps as new buzzword

18Erik Poll Radboud University

What’s changed? Code repositories

Modern software development relies heavily on reusing

components from code repositories

• github, Maven, PyPi, RubyGems,

• New attack vector: supply chain attacks

• Eg Log4J , SolarWinds

• New countermeasures

1) SCA (Software Composition Analysis):
static analysis tools to check software supply chain for CVEs

2) SBOM (Software Bill of Materials)
Required by executive Order 14028 ‘Improving the Nation's

Cybersecurity’ (May 2021)

19Erik Poll Radboud University

What’s changed? ‘Services’

Software increasingly built not only with libraries as components

but also using (cloud-based) services

• eg micro-services, SaaS, cloud APIs, ...

• This introduces

• new attack surfaces

• need for authentication to cloud APIs

• New security flaw: leaking credentials

(JWT tokens, AWS security tokens, ...)

• New countermeasure: SAST tools for secret scanning

• Also: first proposals for SaaSBOMs

20Erik Poll Radboud University

What has changed? Fuzzing

• Fuzzing as (semi)-automated testing technique has proved very

successful at finding security flaws, esp. memory corruption

• Esp. with afl as evolutionary coverage-guided fuzzer

• Google OSS Fuzz initiative is continuously fuzzing open source projects

https://fuzzing-survey.org

Erik Poll 21

One of remaining challenges: fuzzing stateful systems

[Fuzzers for Stateful Systems, Cristian Daniele, Seyed Benham Andarzian, Erik Poll

arXiv:2301.02490, 2023]

Radboud University Erik Poll 22

What has not changed in software

engineering in the past 20 years?

23Erik Poll Radboud University

What has not changed?

Organisations are

• still trying to shift left

• or even still getting started with security in the SDLC

Ongoing initiative by Dutch government organisations:

Grip op SSD (Secure Software Development)

https://www.cip-overheid.nl/en/category/products/secure-software/

24Erik Poll Radboud University

What has not changed? Memory corruption bugs

25

[Source: https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code

 and “Trends, challenge, and shifts in software vulnerability mitigation”, presentation by Matt Miller

at BlueHat IL 2019]

Memory corruption bugs in Chromium project – since 2015

70% of high severity & critical security bugs are memory safety problems

[Source: https://www.chromium.org/Home/chromium-security/memory-safety]

26

Rule of 2 in Chromium project

“When you write code to parse, evaluate, or otherwise handle

untrustworthy inputs from the Internet, don’t do more than 2 of ...”

[https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/security/rule-of-2.md]

Radboud University Erik Poll 27

What has not changed?

Many bugs arise in input handling

Eg flood of bugs in handling WebP image format past weeks:

28Erik Poll Radboud University

input handling problems

Erik Poll 29

HTML

renderer

pdf

viewer

Ethernet

TCP/IP

HTTP

TLS

Wifi / 4G

TCP/IP

HTTP

TLS

Application

database

OS

file system

JavaScript

engine

graphics

library

Radboud University

Garbage In, Garbage out

means

Malicious Garbage In, Security Incident Out

input problems involve parsing & languages

Input is parsed (aka decoded / interpreted/...) in many places.

Involving many languages (aka protocols / formats / ...)

Erik Poll 30

HTML

renderer

pdf

viewer

Ethernet

TCP/IP

HTTP

TLS

Wifi / 4G

TCP/IP

HTTP

TLS

Application

database

OS

file system

JavaScript

engine

graphics

library

Radboud University

Typical bug categories

OWASP Top 10 [2017]

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with

Known Vulnerabilities

10. Insufficient

Logging & Monitoring

CWE TOP 25 [2022]

1 Out-of-bounds Write

2 Cross-site Scripting

3 SQL Injection

4 Improper Input Validation

5 Out-of-bounds Read

6 OS Command Injection

7 Use After Free

8 Path Traversal

9 Cross-Site Request Forgery (CSRF)

10 Unrestricted Upload of File with Dangerous Type

11 NULL Pointer Dereference

12 Deserialization of Untrusted Data

13 Integer Overflow or Wraparound

14 Improper Authentication

15 Use of Hard-coded Credentials

16 Missing Authorization

17 Command Injection

18 Missing Authentication for Critical Function

19 Improper Restriction of Bounds of Memory Buffer

20 Incorrect Default Permissions

21 Server-Side Request Forgery (SSRF)

22 Race Condition

23 Uncontrolled Resource Consumption

24 Improper Restriction of XML External Entity Reference

25 Code Injection

31

MITRE CWE TOP 1000
CWE-14 Compiler Removal of Code to Clear Buffers

CWE-20 ☉ Improper Input Validation

CWE-22 ☉ Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

CWE-23 ☉ Relative Path Traversal

CWE-24 ☉ Path Traversal: '../filedir'

CWE-25 ☉ Path Traversal: '/../filedir'

CWE-26 ☉ Path Traversal: '/dir/../filename'

CWE-27 ☉ Path Traversal: 'dir/../../filename'

CWE-28 ☉ Path Traversal: '..\filedir'

CWE-29 ☉ Path Traversal: '\..\filename'

CWE-30 ☉ Path Traversal: '\dir\..\filename'

CWE-31 ☉ Path Traversal: 'dir\..\..\filename'

CWE-32 ☉ Path Traversal: '...' (Triple Dot)

CWE-33 ☉ Path Traversal: '....' (Multiple Dot)

CWE-34 ☉ Path Traversal: '....//'

CWE-35 ☉ Path Traversal: '.../...//'

CWE-36 ☉ Absolute Path Traversal

CWE-37 ☉ Path Traversal: '/absolute/pathname/here'

CWE-38 ☉ Path Traversal: '\absolute\pathname\here'

CWE-39 ☉ Path Traversal: 'C:dirname'

CWE-40 ☉ Path Traversal: '\\UNC\share\name\' (Windows UNC Share)

CWE-41 ☉ Improper Resolution of Path Equivalence

CWE-51 ☉ Path Equivalence: '/multiple//internal/slash'

CWE-55 ☉ Path Equivalence: '/./' (Single Dot Directory)

CWE-57 ☉ Path Equivalence: 'fakedir/../realdir/filename'

CWE-59 ☉ Improper Link Resolution Before File Access ('Link Following')

CWE-61 UNIX Symbolic Link (Symlink) Following

CWE-62 UNIX Hard Link

CWE-73 External Control of File Name or Path

CWE-74
Improper Neutralization of Special Elements in Output Used by a Downstream Component('Injection')

CWE-75 Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CWE-76 Improper Neutralization of Equivalent Special Elements

CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS CommandInjection')

CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-88 Argument Injection or Modification

CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

CWE-90 Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')

CWE-91 XML Injection (aka Blind XPath Injection)

CWE-93 Improper Neutralization of CRLF Sequences ('CRLF Injection')

CWE-94 Improper Control of Generation of Code ('Code Injection')

CWE-95 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

CWE-96 Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')

CWE-97 Improper Neutralization of Server-Side Includes (SSI) Within a Web Page

CWE-99 Improper Control of Resource Identifiers ('Resource Injection')

CWE-114 Process Control

CWE-116 Improper Encoding or Escaping of Output

CWE-117 Improper Output Neutralization for Logs

CWE-123 Write-what-where Condition

CWE-134 Use of Externally-Controlled Format String

CWE-135 Incorrect Calculation of Multi-Byte String Length

CWE-138 Improper Neutralization of Special Elements

CWE-140 Improper Neutralization of Delimiters

CWE-141 Improper Neutralization of Parameter/Argument Delimiters

CWE-142 Improper Neutralization of Value Delimiters

CWE-143 Improper Neutralization of Record Delimiters

CWE-144 Improper Neutralization of Line Delimiters

CWE-145 Improper Neutralization of Section Delimiters

CWE-146 Improper Neutralization of Expression/Command Delimiters

CWE-147 Improper Neutralization of Input Terminators

CWE-148 Improper Neutralization of Input Leaders

CWE-149 Improper Neutralization of Quoting Syntax

CWE-150 Improper Neutralization of Escape, Meta, or Control Sequences

CWE-151 Improper Neutralization of Comment Delimiters

CWE-152 Improper Neutralization of Macro Symbols

CWE-153 Improper Neutralization of Substitution Characters

CWE-154 Improper Neutralization of Variable Name Delimiters

CWE-155 Improper Neutralization of Wildcards or Matching Symbols

CWE-156 Improper Neutralization of Whitespace

CWE-157 Failure to Sanitize Paired Delimiters

CWE-158 Improper Neutralization of Null Byte or NUL Character

CWE-159 Failure to Sanitize Special Element

CWE-160 Improper Neutralization of Leading Special Elements

CWE-161 Improper Neutralization of Multiple Leading Special Elements

CWE-162 Improper Neutralization of Trailing Special Elements

CWE-163 Improper Neutralization of Multiple Trailing Special Elements

CWE-164 Improper Neutralization of Internal Special Elements

CWE-165 Improper Neutralization of Multiple Internal Special Elements

CWE-166 Improper Handling of Missing Special Element

CWE-167 Improper Handling of Additional Special Element

CWE-168 Improper Handling of Inconsistent Special Elements

CWE-172 Encoding Error

CWE-173 Improper Handling of Alternate Encoding

CWE-174 Double Decoding of the Same Data

CWE-175 Improper Handling of Mixed Encoding

CWE-176 Improper Handling of Unicode Encoding

CWE-177 Improper Handling of URL Encoding (Hex Encoding)

CWE-178 Improper Handling of Case Sensitivity

CWE-179 Incorrect Behavior Order: Early Validation

CWE-180 Incorrect Behavior Order: Validate Before Canonicalize

CWE-181 Incorrect Behavior Order: Validate Before Filter

CWE-182 Collapse of Data into Unsafe Value

CWE-184 ☉ Incomplete Blacklist

CWE-185 Incorrect Regular Expression

CWE-186 Overly Restrictive Regular Expression

CWE-187 Partial Comparison

CWE-188 ☉ Reliance on Data/Memory Layout

CWE-200 Information Exposure

CWE-201 Information Exposure Through Sent Data

CWE-203 Information Exposure Through Discrepancy

CWE-204 Response Discrepancy Information Exposure

CWE-209 Information Exposure Through an Error Message

CWE-210 Information Exposure Through Self-generated Error Message

CWE-211 Information Exposure Through Externally-generated Error Message

CWE-212 Improper Cross-boundary Removal of Sensitive Data

CWE-215 Information Exposure Through Debug Information

CWE-216 Containment Errors (Container Errors)

CWE-227 ☉ Improper Fulfillment of API Contract ('API Abuse')

CWE-241 Improper Handling of Unexpected Data Type

CWE-252 Unchecked Return Value

CWE-253 Incorrect Check of Function Return Value

CWE-273 Improper Check for Dropped Privileges

CWE-311 Missing Encryption of Sensitive Data

CWE-319 Cleartext Transmission of Sensitive Information

CWE-354 Improper Validation of Integrity Check Value

CWE-364 ◄ Signal Handler Race Condition

CWE-365 ◄ Race Condition in Switch

CWE-374 Passing Mutable Objects to an Untrusted Method

CWE-375 Returning a Mutable Object to an Untrusted Caller

CWE-378 Creation of Temporary File With Insecure Permissions

CWE-379 Creation of Temporary File in Directory with Incorrect Permissions

CWE-390 Detection of Error Condition Without Action

CWE-391 Unchecked Error Condition

CWE-394 Unexpected Status Code or Return Value

CWE-405 ◄ Asymmetric Resource Consumption (Amplification)

CWE-406 Insufficient Control of Network Message Volume (Network Amplification)

CWE-407 ☉ Algorithmic Complexity

CWE-408 ◄ Incorrect Behavior Order: Early Amplification

CWE-409 Improper Handling of Highly Compressed Data (Data Amplification)

CWE-410 Insufficient Resource Pool

CWE-412 ◄ Unrestricted Externally Accessible Lock

CWE-413 ◄ Improper Resource Locking

CWE-414 ◄ Missing Lock Check

CWE-430 Deployment of Wrong Handler

CWE-431 Missing Handler

CWE-432 ◄ Dangerous Signal Handler not Disabled During Sensitive Operations

CWE-447 ☉ Unimplemented or Unsupported Feature in UI

CWE-453 Insecure Default Variable Initialization

CWE-454 External Initialization of Trusted Variables or Data Stores

CWE-455 Non-exit on Failed Initialization

CWE-456 Missing Initialization of a Variable

CWE-460 Improper Cleanup on Thrown Exception

CWE-462 Duplicate Key in Associative List (Alist)

CWE-463 Deletion of Data Structure Sentinel

CWE-464 Addition of Data Structure Sentinel

CWE-470 Use of Externally-Controlled Input to Select Classes or Code ('Unsafe Reflection')

CWE-472 External Control of Assumed-Immutable Web Parameter

CWE-474 ☉ Use of Function with Inconsistent Implementations

CWE-479 ◄ Signal Handler Use of a Non-reentrant Function

CWE-488 ◄ Exposure of Data Element to Wrong Session

CWE-489 ☉ Leftover Debug Code

CWE-493 ☉ Critical Public Variable Without Final Modifier

CWE-494 Download of Code Without Integrity Check

CWE-496 Public Data Assigned to Private Array-Typed Field

CWE-497 Exposure of System Data to an Unauthorized Control Sphere

CWE-498 ☉ Cloneable Class Containing Sensitive Information

CWE-500 ☉ Public Static Field Not Marked Final

CWE-502 ☉ Deserialization of Untrusted Data

CWE-506 ☉ Embedded Malicious Code

CWE-507 ☉ Trojan Horse

CWE-508 Non-Replicating Malicious Code

CWE-509 ☉ Replicating Malicious Code (Virus or Worm)

CWE-510 Trapdoor

CWE-511 ☉ Logic/Time Bomb

CWE-512 ☉ Spyware

CWE-524 ☉ Information Exposure Through Caching

CWE-526 Information Exposure Through Environmental Variables

CWE-538 File and Directory Information Exposure

CWE-539 ☉ Information Exposure Through Persistent Cookies

CWE-543 ◄ Use of Singleton Pattern Without Synchronization in a Multithreaded Context

CWE-544 Missing Standardized Error Handling Mechanism

CWE-546 ☉ Suspicious Comment

CWE-548 ☉ Information Exposure Through Directory Listing

CWE-584 Return Inside Finally Block

CWE-587 Assignment of a Fixed Address to a Pointer

CWE-591 Sensitive Data Storage in Improperly Locked Memory

CWE-595 Comparison of Object References Instead of Object Contents

CWE-598 Information Exposure Through Query Strings in GET Request

CWE-605 Multiple Binds to the Same Port

CWE-622 ☉ Improper Validation of Function Hook Arguments

CWE-636 ☉ Not Failing Securely ('Failing Open')

CWE-637 ☉ Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

CWE-638 Not Using Complete Mediation

CWE-641 Improper Restriction of Names for Files and Other Resources

CWE-643 Improper Neutralization of Data within XPath Expressions ('XPath Injection')

CWE-652 Improper Neutralization of Data within XQuery Expressions ('XQuery Injection')

CWE-663 ◄ Use of a Non-reentrant Function in a Concurrent Context

CWE-664 Improper Control of a Resource Through its Lifetime

CWE-666 ☉ Operation on Resource in Wrong Phase of Lifetime

CWE-674 ☉ Uncontrolled Recursion

CWE-688 Function Call With Incorrect Variable or Reference as Argument

CWE-694 Use of Multiple Resources with Duplicate Identifier

CWE-754 Improper Check for Unusual or Exceptional Conditions

CWE-759 Use of a One-Way Hash without a Salt

CWE-761 Free of Pointer not at Start of Buffer

CWE-765 ◄ Multiple Unlocks of a Critical Resource

CWE-767 Access to Critical Private Variable via Public Method

CWE-773 ◄ Missing Reference to Active File Descriptor or Handle

CWE-774 ◄ Allocation of File Descriptors or Handles Without Limits or Throttling

CWE-777 Regular Expression without Anchors

CWE-785 Use of Path Manipulation Function without Maximum-sized Buffer

CWE-789 Uncontrolled Memory Allocation

• sadsd

32

http://cwe.mitre.org/data/pdf/1000_with_1344_colors.pdf

The two problems in input handling

33

a bug !
application

malicious

input

1. Insecure, buggy parsing

eg. buffer overflow

in WebP library

Erik Poll Radboud University

(abuse of) a feature !
2. Unintended parsing

back-end

service

malicious

input application

eg. SQL injection, XSS, ...

Tackling buggy parsing:

using the LangSec approach

Erik Poll Radboud University 34

Root causes of buggy parsing

1. Many input languages / formats / protocols

Wifi, Ethernet, Bluetooth, GSM/3G, 4G, 5G, ...

 TCP/IP, UDP, HTTP(S), TLS, SSH, OpenVPN, ...

 URLs, X509 certificates, domain names, ...

 JPG, MP3, MPEG, WebP, ...

 HTML, PDF, Word, Excel, Powerpoint, ...

Often these are complex and/or poorly specified

2. Hand-written parser code, often in unsafe languages like C(++)

Fuzzing – aka fuzz testing – is a great way to find these bugs!

Radboud University Erik Poll 35

LangSec: tackling buggy parsing

1. Provide clear, formal spec of input language

eg as regular expression or BNF grammar

2. Generate parser code

using a parser generator tool

More info at langsec.org

Radboud University Erik Poll 36

application

p
a

rs
e

r

Tackling unintended parsing

(ie injection attacks)

use types!

Erik Poll Radboud University 37

Many back-ends, with input languages,

more problems with unintended parsing …

38

SQL

databasemalicious

input

web

application

web

browser

HTML

injection

SQLi

Erik Poll

file

systempath

traversal

PDF viewer

OS

Radboud University

CVE-2022-45025

OS command injection

via PDF file import

JavaScript

engine

XSS

Root causes of unintended parsing

1. Many languages: e.g HTML, SQL, PDF, OS commands

• Also output languages, not just input languages

• Possibly combined or nested in complex way

2. Complex data flows where user input can end up being interpreted

as one of these languages

3. Powerful, expressive languages

JavaScript in HTML,

JavaScript or ActionScript in PDF,

SQL commands,

OS commands, ...

Radboud University Erik Poll 39

Anti-pattern: strings

Strings are useful, because you use them to represent many things

eg. user name, file name, email address, URL, shell command,

snippet of SQL, HTML, or JavaScript, ...

• Not just String but also char*, char[], StringBuilder, ...

This also make strings dangerous:

1. A string is unstructured & unparsed data, and processing it often

involves some interpretation – incl. parsing

2. The same string may be handled & interpreted in many – possibly

unexpected – ways

3. A string parameter in an API call can – and often does – hide a very

expressive & powerful language

40Erik Poll Radboud University

Solutions: output encoding or safe APIs

41

back-end

service

$uname

$pwd
application

output encoding
of $uname and $pwd

Erik Poll Radboud University

SELECT * FROM Users WHERE name = " + $uname

+ "AND password = " + $pwd

safe API
(eg Parameterised Queries)

back-end

service

$uname

$pwd
application

SELECT * FROM Users WHERE name = ?1

AND password = ?2

$uname, $pwd

This is about avoiding parsing

Safe Builder Approach

• Classic approach to finding injection flaws in SAST tools:

tainting

• More structural approach (in coding phase):

‘safe builder approach’

i.e. introduce a dedicated type for a specific format /language

with a restricted set of operations to construct values of that

type

[Christoph Kern. Preventing Security Bugs through Software Design.

Presentation at OWAPS AppSec California 2016. 2016. https://www.youtube.com/watch?v=ccfEu-Jj0as]

Radboud University Erik Poll 42

Example: Safe builder for SQL injection

• Suppose we have an unsafe API method
void executeDynamicSQLQuery (String s)

• We define a new ‘wrapper’ String type SQLquery

and a function that executes such a wrapped string

 void safeExecuteSQLQuery (SafeSQLquery s){
 executeDynamicSQLCommand(the string in s);
 }

• We now define functions to create SafeSQLqueries

1. any compiled-time constant can be turned into a SQLquery

 SafeSQLquery create (@CompiletimeConstant String s)

2. we can append a string to an SafeSQLquery using a function

 SafeSQLquery appendSQL (SafeSQLquery q, String s)

which applies the right encoding to s

Type system guarantees that user inputs in queries are properly encoded.
We can gradually disallow use of the old unsafe executeDynamicSQLQuery.

43

Safe builders for several contexts

If we use string-like data in several contexts, each with their own

encoding, we can introduce a different String-like type for each, e.g.

 SafeSQLquery, SafeHTML, SafeOSCommand, SafeFilename

with association constructors or factory methods for each, e.g.

 SafeHTML create (@CompiletimeConstant String s)

 SafeHTML concatHTML (SafeHTML h1, SafeHTML h2)

 SafeHTML appendHTML (SafeHTML h, String s)

appendHTML(h,s) and appendSQL(h,s) would use different encodings

(aka sanitisations) for the parameter s

We could introduce unsafe loopholes that we evaluate by hand

 SafeHTML unsafeCreate (String s)

44

Example: Trusted Types DOM API in Chrome browser

Trusted Types initiative to root out DOM-based XSS

replaces string-based DOM API with typed API

• Type checking ensures that untrusted data can only reach dangerous

APIs after passing (carefully vetted) validation or encoding operations

TrustedHTML htmlEncode(String str)

TrustedHTML create(@Compiletimeconstant String str)

[Wang et al., If It's Not Secure, It Should Not Compile: Preventing DOM-Based XSS in Large-

Scale Web Development with API Hardening, ICSE'21, ACM/IEEE, 2021]

[https://github.com/WICG/trusted-types]

45Erik Poll Radboud University

Summary

• We know how to make software more secure:

just pick one of the many secure development methodologies

• Agile & DevOps only highlight the importance of shifting left

• The use of repos increases risk of supply chain attacks:

hence SCA and SBOMs

• Using more ‘services’ means more authentication to APIs and

more credentials that can leaks.

hence secret scanning tools as part of SAST. And SaaSBOMs?

• Structural way to improve security by shifting down:

eg recognise the role of input languages and parsing of them

• use LangSec approach to prevent them

• use types to track different kinds of data

Radboud University Erik Poll 46

Thanks for your attention!

Radboud University Erik Poll 47

[Strings considered harmful , USENIX :login; 2019]

	Slide 1: Twenty years of secure software development
	Slide 4: A brief history of software security: January 2002
	Slide 5: Flaws found in Microsoft’s first security bug fix month
	Slide 6: Twenty years later
	Slide 7: Software Security
	Slide 8: Early 2000s
	Slide 9: McGraw’s Touchpoints
	Slide 10: Microsoft SDL
	Slide 11: OWASP OpenSAMM
	Slide 12: BSIMM (Building Security In Maturity Model)
	Slide 13: BSIMM to compare security maturity
	Slide 14: Software security in slogans
	Slide 15: What has changed in software engineering in the past 20 years?
	Slide 16: What’s changed? More acronyms
	Slide 17: Many more methodologies, frameworks, and guidelines
	Slide 18: What’s changed? Agile & DevOps
	Slide 19: What’s changed? Code repositories
	Slide 20: What’s changed? ‘Services’
	Slide 21: What has changed? Fuzzing
	Slide 22: One of remaining challenges: fuzzing stateful systems
	Slide 23: What has not changed in software engineering in the past 20 years?
	Slide 24: What has not changed?
	Slide 25: What has not changed? Memory corruption bugs
	Slide 26: Memory corruption bugs in Chromium project – since 2015
	Slide 27: Rule of 2 in Chromium project
	Slide 28: What has not changed?
	Slide 29: input handling problems
	Slide 30: input problems involve parsing & languages
	Slide 31: Typical bug categories
	Slide 32
	Slide 33: The two problems in input handling
	Slide 34: Tackling buggy parsing: using the LangSec approach
	Slide 35: Root causes of buggy parsing
	Slide 36: LangSec: tackling buggy parsing
	Slide 37: Tackling unintended parsing (ie injection attacks) use types!
	Slide 38: Many back-ends, with input languages, more problems with unintended parsing …
	Slide 39: Root causes of unintended parsing
	Slide 40: Anti-pattern: strings
	Slide 41: Solutions: output encoding or safe APIs
	Slide 42: Safe Builder Approach
	Slide 43: Example: Safe builder for SQL injection
	Slide 44: Safe builders for several contexts
	Slide 45: Example: Trusted Types DOM API in Chrome browser
	Slide 46: Summary
	Slide 47: Thanks for your attention!

