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A brief history of software security: January 2002
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Flaws found in Microsoft’s first security bug fix month

o
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Twenty years later

EU & US announce regulation for software security

EU Cyber Resilience Act

Q@

NATIONAL
CYBERSECURITY
For safer & more secure STRATEGY

digital products

MARCH 2023

#Migitalty #CyberSecEl

STRATEGIC OBIJECTIVE 3.3: SHIFT EIABIEERR

P S
(Sept 2022: proposed regulation RODUCTS AND SERVICES

to complement NIS2 framework)

(May 2023)

https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act

https://lwww.whitehouse.gov/briefing-room/statements-releases/2023/03/02/fact-sheet-biden-harris-administration-announces-national-cybersecurity-strategy
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Software Security

« Software is the cause of cybersecurity problems

« Software security = everything we can do to reduce or manage
the risks of security problems involving software

« covers all aspects of software engineering (from requirement
engineering & initial design to static analysis, testing, monitoring &
patching), programming languages, ‘platforms’/tech stacks,
protocols, APIs, ...

« aka AppSec (Application Security),
but AppSec can have narrower meaning
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Early 2000s

Security Project

Gary McGraw CLASP and SAMM by OWASP

Buildin

Secure Soltware

nnnnn Washey Software Seceity Series o'

& SOFTWARE
SECURITY

S RIT

THE SECURITY
DEVELOPMENT

LIFECYCLE

GARY HcERRAW

Furemedd by Dan fees

‘Building Security In’ aka
Cigital Touchpoints

Software [In]security: Nine Things
Everybody Does: Software Security
Activities from the BSIMM

BSIMM by Synopsis
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McGraw’s Touchpoints

Security External Static Penetration
requirements review analysis testing
(tools)

Abuse Risk Risk-based Risk |
cases analysis security tests analysis Security
/ \ i \ breaks

Requirements Design Test Code Test Field
and use cases plans results feedback

Security activities throughout the software development life cycle (SDLC)

[Gary McGraw, Software security, Security & Privacy Magazine, IEEE, Vol 2, No. 2, pp. 80-83, 2004. ]
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Microsoft SDL

Requirements

Establish Security
Requirements

Core Security Create Quality
Training Gates / Bug Bars

Security & Privacy
Risk Assessment

Implementation ; Verification

Establish Design Use Approved Dynamic Incident
Requirements Tools Analysis Response Plan

Analyze Attack Deprecate Unsafe Fuzz Final Security
Surface Functions Testing Review

Threat Static Attack Surface Release
Modeling Analysis Review Archive
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OWASP OpenSAMM

OPENSAMM

12 security practices in 4 business functions

SAMM Overview
Software
Development

Business Functions

( Construction [ Verification Deployment

Security Practices

Strategy & Education & Security Design Security Environment
Metrics Guidance Requirements Review Testing Hardening
Policy & Threat Secure Code Vulnerability Operational
Compliance Assessment Architecture Review Management Enablement
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BSIMM (Building Security In Maturity Model)

12 practices across 4 domains, subdivided into 100 activities

Governance Intelligence SSDL Touchpoints @ Deployment

Strategy and Metrics Attack Models Architecture Analysis Penetration Testing

Compliance and Policy Security Features Code Review Software Environment
and Design

Training Standards and Security Testing Configuration Management
Requirements and Vulnerability Manage-

ment

https:/Iwww.bsimm.com/framework/
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BSIMM to compare security maturity

Strategy & Melrics
301

Compliance & Policy

Configuration Mgmt. & Vuinerabliity Mgmt.

Software Environment . Training

Attack Models

Penetration Testing

Security Testing ' Security Features & Design

Code Review ‘Standards & Requirements

Architecture Analysis
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Software security in slogans

« Security by Design: thinking of security from the start

« But: we will never foresee or prevent all security problems

« Shifting Left: tackling security earlier

* eg. not (only) relying on pen-testing but (also) having security tests
or even static analysis to catch problems

« Shifting Down: tackling security /Jower in the tech stack

* moving from C/C++ to Rust

* using a web framework for session management instead of making
your own

« using ‘safe’ APIs instead of injection-prone APIs (more later)

 LangSec to tackle root causes of insecure input handling (more later)

Erik Poll Radboud University 14



What has changed in software engineering
In the past 20 years?

Erik Poll Radboud University

15



What’s changed? More acronyms

« SAST: static application security testing
static analysis to catch security flaws

« DAST: dynamic application security testing
testing to catch security flaws

 |AST: /nteractive application security testing
(tool-supported) penetration testing

« RASP: runtime application self-protection
instrumentation to detect weird things at runtime
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Many more methodologies, frameworks, and guidelines

Most methodologies for secure software lifecycles are very similar

Arina Kudriavtseva & Olga Gadyatskaya of Leiden University recently compared
28 of them [arXiv:2211.16987, 2022]

More concrete ‘guidelines’ to supplement such methodologies
include

OWASP ASVS (Application Security Verification Requirements)
NIST SP 800-218 SSDF (Secure Software Development Framework)

Hard to see the forest for the trees!

« OWASP OpenCRE by a.o. Rob van der Veer of SIG in Amsterdam is
recent initiative to relate entries between methodologies, guidelines
and standards [https://Iwww.opencre.org]
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What’s changed? Agile & DevOps

il:”"""”’“ st kw\ffjiiii’;‘iii\: ‘?:'1{7‘1&13“&:&” ‘\J\ Securty
All approaches for secure SDLC use waterfall model . | AT TN
frame of reference

eeeeeeeeeeeeee

« How can we cope with Agile development?
You cannot use pen-testers for every new feature...

 Hence: more important to shift left!
Eg using SAST & DAST. And train developers to give them
more security expertise?

« How can we cope with DevOps ?
You cannot hire pen-testers or run tests for every new release...

 Hence: even more important to shift left!
Eg integrate SAST (& DAST?) into CD/CI pipelines

 Some proposals for DevSecOps as new buzzword
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What’s changed? Code repositories

Modern software development relies heavily on reusing
components from code repositories

« github, Maven, PyPi, RubyGems, ....
 New attack vector: supply chain attacks
« EglLog4J , SolarWinds

NCSC slaat alarm om The Untold Story of the Boldest
kwetsbaarheid in Apache Log4j

Supply-Chain Hack Ever

The attackers were in thousands of corporate and government networks. They
11 december 2021 11:55 | Rik Sanders might still be there now. Behind the scenes of the SolarWinds investigation.

 New countermeasures

1) SCA (Software Composition Analysis):
static analysis tools to check software supply chain for CVEs

2) SBOM (Software Bill of Materials)
Required by executive Order 14028 ‘Improving the Nation's
Cybersecurity’ (May 2021)

Erik Poll Radboud University
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What’s changed? ‘Services’

Software increasingly built not only with libraries as components
but also using (cloud-based) services

* eg micro-services, SaaS, cloud APIs, ...

This introduces

* new attack surfaces

 need for authentication to cloud APlIs

New security flaw: leaking credentials
(JWT tokens, AWS security tokens, ...)

New countermeasure: SAST tools for secret scanning

Also: first proposals for SaaSBOMs
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What has changed? Fuzzing

* Fuzzing as (semi)-automated testing technique has proved very
successful at finding security flaws, esp. memory corruption

« Esp. with afl as evolutionary coverage-guided fuzzer

« Google OSS Fuzz initiative is continuously fuzzing open source projects
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One of remaining challenges: fuzzing stateful systems

O
=t S
ms

[Fuzzers for Stateful Systems, Cristian Daniele, Seyed Benham Andarzian, Erik Poll

arXiv:2301.02490, 2023]

Erik Poll

Radboud University
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Erik Poll

What has not changed in software
engineering in the past 20 years?

Radboud University
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What has not changed?

Organisations are
« still trying to shift left

« or even still getting started with security in the SDLC

Ongoing initiative by Dutch government organisations:

Grip op SSD (Secure Software Development)

https:/Iwww.cip-overheid.nl/len/category/products/secure-software/

Erik Poll Radboud University
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What has not changed? Memory corruption bugs

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Patch Year

B Memory safety B Not memory safety

[Source: https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code
and “Trends, challenge, and shifts in software vulnerability mitigation”, presentation by Matt Miller
at BlueHat IL 2019]
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Memory corruption bugs in Chromium project — since 2015

70% of high severity & critical security bugs are memory safety problems

Security-related assert

7 1%

Use-after-froe

Other

23.9%

Other memaory unsafety

[Source: https://www.chromium.org/Home/chromium-security/memory-safety ]
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Rule of 2 in Chromium project

“When you write code to parse, evaluate, or otherwise handle
untrustworthy inputs from the Internet, don’t do more than 2 of ...”

“Rule of

Two Code which

processes DOOM!

untrustworthy Don’t do this.
inputs

Code written runs with no

in an unsafe sandbox (e.g.
language browser
(C/C++) process)

[https:/Ichromium.googlesource.com/chromium/src/+/refs/heads/main/docs/security/rule-of-2.md)]
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What has not changed?

Many bugs arise in '"F“T handling

Eg flood of bugs in handling WebP image format past weeks:

Apple squashes security bugs after iPhone (titical New 1Password,

flaws exploited by Predator spyware Signal, Chrome, Edge,
Holes in i0S, macOS and more fixed following tip off from Google, Citizen Lab Fi]‘.'EfOX Emergency Security
A Chris Williams Fri 22 Sep 2023 19:58 UTC Updates

Davey Winder Senior Contributor ® m
. . . Co-founder, Straight Talking Cyber
Critical vuln in libwebp: Go get

updates to Chrome, Firefox, Edge, we b o p o

Slack and more.
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mm,"' handling problems

Garbage In, Garbage out
means
Malicious Garbage In, Security Incident Out

pdf
viewe
[ 9:;:5)::.08 JavaScript
g Application engine
N ]
file system

HTTP TP

) =
TLS S -database

TCPI/IP
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mm,"' problems involve parsing & languages

Input is parsed (aka decoded / interpreted/...) in many places.
Involving many languages (aka protocols / formats /...)

pdf
viewe
graphics ]
) JavaScript
[ librar v el

g Application
4\ ]

file system

HTTP TP

) =
TLS S -database

TCPI/IP
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Typical bug categories
OWASP Top 10 (20177 CWE TOP 25 [2022] MITRE CWE TOP 1000

1. Injection 1 Out-of-bounds Write
2 Cross-site Scripting
. 3 SAQL Injection
2. Broken Authenticat
roken Authentication 4 Improper Input Validation
3. Sensitive Data Exposure 2 8;?;;:‘0;12::'22% on
. 7 Use After Free
4. XML External Entities (XXE) 8 Path Traversal
9 Cross-Site Request Forgery (CSRF)
5. Broken Access Control 10 Unrestricted Upload of File with Dangerous Type
11 NULL Pointer Dereference
6. Security Misconfiguration 12 Deserialization of Untrusted Data
13 Integer Overflow or Wraparound
7. Cross-Site Scripting (XSS) 14 Improper Authentication

15 Use of Hard-coded Credentials

16 Missing Authorization

17 Command Injection

18 Missing Authentication for Critical Function

19 Improper Restriction of Bounds of Memory Buffer

8. Insecure Deserialization

9. Using Components with

Known Vulnerabilities 20 Incorrect Default Permissions
21 Server-Side Request Forgery (SSRF)
10. Insufficient 22 Race Condition
Logging & Monitoring 23 Uncontrolled Resource Consumption

24 Improper Restriction of XML External Entity Reference
25 Code Injection
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The two problems in input handling

1. Insecure, buggy parsing

\abug!

malicious .
application

v =

2. Unintended parsing

eg. buffer overflow

- ~ in WebP library

(abuse of) a feature !

malicious -
INFRT application back-end\
l ervice

- Y,

eg. SQL injection, XSS, ...
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Erik Poll

Tackling buggy parsing:

using the LangSec approach

Radboud University
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Root causes of buggy parsing

1. Many input languages / formats / protocols

Wifi, Ethernet, Bluetooth, GSM/3G, 4G, 5G, ...
TCP/IP, UDP, HTTP(S), TLS, SSH, OpenVPN, ...
URLSs, X509 certificates, domain names, ...
JPG, MP3, MPEG, WebP, ...
HTML, PDF, Word, Excel, Powerpoint, ...

Often these are complex and/or poorly specified

2. Hand-written parser code, often in unsafe languages like C(++)

Fuzzing - aka fuzz testing - is a great way to find these bugs!

Erik Poll Radboud University 35



LangSec: tackling buggy parsing

1. Provide clear, formal spec of input language

eg as regular expression or BNF grammar

2. Generate parser code

using a parser generator too/

Y

More info at langsec.org

application \

—

Jossed | ™\

- /

Erik Poll Radboud University
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Tackling unintended parsing
(ie injection attacks)

use types!

Radboud University
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Many back-ends, with input languages,
more problems with unintended parsing ...

[ SQL }
g malicious SQLi database
Qt/

web

application
HTML ) | e
injection ’K J path system
l traversal

browser

[ PDF viewer }

CVE-2022-45025
OS command injection
(0133 via PDF file import

JavaScript
engine
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Root causes of unintended parsing

1. Many languages: e.g HTML, SQL, PDF, OS commands

« Also output languages, not just input languages

« Possibly combined or nested in complex way

2. Complex data flows where user input can end up being interpreted
as one of these languages

3. Powerful, expressive languages

JavaScriptin HTML,

JavaScript or ActionScript in PDF,
SQL commands,

OS commands, ...

Erik Poll Radboud University 39



Anti-pattern: TRINGS

Strings are useful/, because you use them to represent many things

eg. user name, file name, email address, URL, shell command,
snippet of SQL, HTML, or JavaScript, ...

* Notjust String butalso char*, char[], StringBuilder,
This also make strings dangerous:

1. A string is unstructured & unparsed data, and processing it often
involves some interpretation - incl. parsing

2. The same string may be handled & interpreted in many — possibly
unexpected — ways

3. A string parameter in an API call can — and often does - hide a very
expressive & powerful language

Erik Poll Radboud University 40



Solutions: output encoding or safe APIs

$uname

-

$uname

| [

[ O

application |sg| gcT* FROM Users WHERE name = " + $uname
+ "AND password =" + $pwd

— back-end

\

N\ _/output encoding service

of $uname and $pwd

application
SELECT * FROM Users WHERE name = 71

AND password = ?2

back-end
$uname, $pwd

F service

safe API
(eg Parameterised Queries)

This is about avoiding parsing

Erik Poll
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Safe Builder Approach

Classic approach to finding injection flaws in SAST tools:

tainting

More structural approach (in coding phase):

‘safe builder approach’

i.e. introduce a dedicated type for a specific format /language
with a restricted set of operations to construct values of that

type

[Christoph Kern. Preventing Security Bugs through Software Design.
Presentation at OWAPS AppSec California 2016. 2016. https://www.youtube.com/watch?v=ccfEu-Jj0as]
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Example: Safe builder for SQL injection

 Suppose we have an unsafe APl method
void executeDynamicSQLQuery (String s)

« We define a new ‘wrapper’ String type sQLquery
and a function that executes such a wrapped string

void safeExecuteSQLQuery (SafeSQLquery s) {

executeDynamicSQLCommand (the string in s ) ;
}

« We now define functions to create safesSQLqueries

1. any compiled-time constant can be turned into a SQLquery
SafeSQLquery create (@CompiletimeConstant String s)

2. we can append a string to an SafeSQLquery using a function
SafeSQLquery appendSQL (SafeSQLquery g, String s)

which applies the right encoding to s

Type system guarantees that user inputs in queries are properly encoded.
We can gradually disallow use of the old unsafe executeDynamicSQLQuery.
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Safe builders for several contexts

If we use string-like data in several contexts, each with their own
encoding, we can introduce a different String-like type for each, e.g.

SafeSQLquery, SafeHTML, SafeOSCommand, SafeFilename

with association constructors or factory methods for each, e.g.

SafeHTML create (QCompiletimeConstant String s)
SafeHTML concatHTML (SafeHTML hl, SafeHTML h2)

SafeHTML appendHTMIL (SafeHTML h, String s)

appendHTML (h, s) and appendSQL (h, s) would use different encodings
(aka sanitisations) for the parameter s

We could introduce unsafe loopholes that we evaluate by hand

SafeHTML unsafeCreate (String s)
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Example: Trusted Types DOM API in Chrome browser

Trusted Types initiative to root out DOM-based XSS
replaces string-based DOM API with typed API

« Type checking ensures that untrusted data can only reach dangerous
APIs after passing (carefully vetted) validation or encoding operations

TrustedHTML htmlEncode (String str)
TrustedHTML create (@Compiletimeconstant String str)

[Wang et al., If It's Not Secure, It Should Not Compile: Preventing DOM-Based XSS in Large-
Scale Web Development with APl Hardening, ICSE'21, ACM/IEEE, 2021]

[https:/igithub.com/WICG/trusted-types]
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Summary

We know how to make software more secure:
just pick one of the many secure development methodologies

Agile & DevOps only highlight the importance of shifting left

The use of repos increases risk of supply chain attacks:
hence SCA and SBOMs

Using more ‘services’ means more authentication to APls and
more credentials that can leaks.
hence secret scanning tools as part of SAST. And SaaSBOMs?

Structural way to improve security by shifting down:
eg recognise the role of input languages and parsing of them

« use LangSec approach to prevent them

« use types to track different kinds of data
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Thanks for your attention!

CONSIDERED "

I HARMFuL

[Strings considered harmful USENIX :login; 2019]

Radboud University
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