
Problems developing secure
applications

Erik Poll
Security of Systems (SoS)

Radboud University Nijmegen

Erik Poll Radboud Universiteit Nijmegen 2

This talk

• security group in Nijmegen
• why security is difficult
• some things you can do
• our research on software security
• topics for discussion

Erik Poll Radboud Universiteit Nijmegen 3

Security of Systems (SoS) group

• largest Dutch research group in computer security
• Master in Computer Security
 together with TUE and UT in

Informatica

Erik Poll Radboud Universiteit Nijmegen 4

Research topics in our group

• software security

– for Java on smartcards (JavaCard) & mobile
phones (J2ME)

– for C++ hypervisor (OS microkernel)
• security protocols & applied cryptography

– for low power devices, eg. RFID

• identity-centric security
– privacy, anonymity
– identity management

Erik Poll Radboud Universiteit Nijmegen 5

Some activities

• LaQuSo – Laboratory for Quality Software
– collaboration with TU Eindhoven
– contract research to bridge gap
 from university to industry

• Cycris - Centre for CyberCrime Studies
 with law faculties of Nijmegen & Tilburg

Erik Poll Radboud Universiteit Nijmegen 6

Software security

• up to the late 1990s, security was about
– crypto
– operating systems

• recent realisation: it's the software!!

Erik Poll Radboud Universiteit Nijmegen 7

Why is security such a problem?

• Security is always a secondary concern
– Primary goal is functionality
– Secondary goal is restricting this functionality

to make things secure
• in the short term, there is no motivation or

reward whatsoever for improving security

This problem occurs at many different levels
• in programs...
• but also in programming languages, training,

...

Erik Poll Radboud Universiteit Nijmegen 8

Security as secondary concern

• in programming languages
– Algol 60 introduces array bound checks, in 1960
– C doesn't use this, in 1970s ...

– ... 3 decades later, we're still trying to get rid
of buffer overflows

– early 2000s: people start using safestr.h

Erik Poll Radboud Universiteit Nijmegen 9

Security as secondary concern

• in training
– many students learn programming in C(++)
– nobody tells them about buffer overflows or

safestring libraries

– a case of criminal negligence?

Erik Poll Radboud Universiteit Nijmegen 10

The bad news:
people keep making the same mistakes

• public fields in Java
– included for efficiency reasons...

• SQL injection
– string concatenation is a convenient way to build

SQL queries...
• will we be chasing SQL injection faults in 30 years

time, just as we're still chasing buffer overflow
attacks?

• insist on use of eg. PreparedStatement?
• PHP

– PHP is a convenient way to quickly build a
website...

Erik Poll Radboud Universiteit Nijmegen 11

Functionality vs security : PHP

 "..., I've come to the conclusion that it is basically
impossible for normal programmers to write
secure PHP code.

 It takes far too much effort. PHP's raison d'etre is that it is
simple to pick up and make it do something useful. There needs to
be a major push ... to make it safe for the likely level of
programmers - newbies. Newbies have zero chance of writing
secure software unless their language is safe. "

 [http://www.greebo.cnet]

Erik Poll Radboud Universiteit Nijmegen 12

Security in Software Development Life Cycle

But WHY
bother with
all this ?

Erik Poll Radboud Universiteit Nijmegen 13

Why bother with security at all?

• The only reasons to take security seriously
– economic

• but many companies have been successful
without being overly concerned with security

• things seem to be slowly changing
– eg telco's are seriously worried about the quality

of code on their mobile phones
– legal

• Sarbanes-Oxley
• privacy and data protection legislation
• software liability

Erik Poll Radboud Universiteit Nijmegen 14

Security in Software Development Life Cycle

But HOW
to introduce
all this ?

Look how
others have
done this, eg

Microsoft

Erik Poll Radboud Universiteit Nijmegen 15

Typical software security vulnerabilities

Security bugs found in Microsoft bug fix month (2002)

37%

20%

26%

17%
0%

buffer overflow
input validation
code defect
design defect
crypto

Erik Poll Radboud Universiteit Nijmegen 16

Microsoft's SDL
(Security Development Lifeycle)

1. Education & Awareness
2. Define & Follow Best Practices
3. Product Risk Assessment and Analysis
4. Secure Coding Policies

– incl. checklists & source code analysis tools
5. Secure Testing Policies
6. Security Response Planning & Execution

Erik Poll Radboud Universiteit Nijmegen 17

Quality assurance at Microsoft

• Original process: manual code inspection
– effective when team & system are small
– too many paths/interactions to consider as system grew

• Early 1990s: add massive system & unit testing
– Test tooks week to run

• different platforms & configurations
• huge number of tests

– Inefficient detection of security holes
• Early 2000s: enter static analysis

Erik Poll Radboud Universiteit Nijmegen 18

Spot the defects

class Student {
 int idnr;
 String name;

 public boolean equals(Student s){
 if (s==null);{

 return false;}
 return (idnr == s.idnr & name == s.name);
 }

empty statement is
legal Java, but probably

a mistake

equals(Student s) does not
override equals(Object o),

but overloads it

use .equals, not == for Strings

Erik Poll Radboud Universiteit Nijmegen 19

 The "good" news:
people keep making the same mistakes

• We can make checklists for common mistakes
• We can implement tools that check them

– source code analysers aka static analysis tools

• Static analysis tools for C(++)
– Coverity, Fortify, jTest, PolySpace, PREfast, PREfix, ...

• C/C++ checkers focus on memory-related issues
 and for Java

– CheckStyle, Findbugs, PMD, Fortify, jTest, IntelliJ, ...

Erik Poll Radboud Universiteit Nijmegen 20

Spot the defect

{ ...
 if (spec!=null) f.add(spec);
 if(isComplete(spec)) prefs.add(spec);
....}

boolean isComplete(Preference spec){
 return spec.getColorKey() != null
 && spec.getColorValue() != null
 && spec.getTextKey() != null;
}

isComplete should not

get a null argument

Erik Poll Radboud Universiteit Nijmegen 21

Spot the defect

{ ...
 if (spec!=null) f.add(spec);
 if(isComplete(spec)) prefs.add(spec);
....}

boolean isComplete(@NonNull Preference spec){
 return spec.getColorKey() != null
 && spec.getColorValue() != null
 && spec.getTextKey() != null;
}

annotation expresses
intent and makes

analysis – by human or
tool - easier

Erik Poll Radboud Universiteit Nijmegen 22

Java metadata tags

• introduced in Java 1.5 (JSR 175)
• JSR 305 "Annotations for Software Defect Detection"

currently in progress
– @NonNull, @Nullable
– @Tainted, @Untainted to find input validation problems
– @NonNegative
– @WillClose, @WillNotClose
– @CheckReturnValue

• allows enhanced static analysis
– tainting analysis (data flow analysis)
– intra-procedural analysis

Erik Poll Radboud Universiteit Nijmegen 23

beyond Java tags: JML

public class ChipKnip{
 private int balance;
 //@ invariant 0 <= balance && balance < 500;

 //@ requires amount >= 0;
 //@ ensures balance <=\old(balance);
 //@ signals (BankException) balance ==

\old(balance);
 public debit(int amount) {
 if (amount > balance) throw(new

BankException("No way"));
 balance = balance – amount;
 }

Erik Poll Radboud Universiteit Nijmegen 24

JML

• Specification language for Java
– Properties can be specified in Design-By-Contract style,

 using pre/postconditions and invariants
• Various tools to check JML specifications by eg

– runtime checking
– program verification/static analysis

• at compile time
• Related work

– Spec# for C# by Microsoft
– SparkAda for Ada
– EauClaire for C by Brian Chess

Erik Poll Radboud Universiteit Nijmegen 25

Ongoing work on using JML

 Can we specify & statically
check for a J2ME mobile
phone application
– display sticks to this

navigation graph
– only opens a limited

number of sms://
connections

– only connects to
approved numbers?

Erik Poll Radboud Universiteit Nijmegen 26

Other annotation languages

• PREfast static analysis tool (in Visual Studio 2005)
uses SAL (Standard Annotation Language) to mark
up C/C++ code.

 Eg
 __checkReturn void *malloc(__in size_t s);

 __checkReturn means that caller must check the
return value of malloc

Erik Poll Radboud Universiteit Nijmegen 27

Conclusions

• Security is secondary concern
– in programming, language design, training, ...
– left to itself, it will be ignored

• People keep making the same mistakes,
– which can be good news!

• education can prevent people making these
mistakes

• checklists can catch common mistakes
– some in automatic checks by tools
– more with annotations in code

Erik Poll Radboud Universiteit Nijmegen 28

To improve software security

• commitment (why)
– economic, legal
– at management level

• knowledge (what)
– common problems
– best practices

• implementing it (how)
– awareness
– checklists, tools, SDL
– spot-the-defect competitions

Erik Poll Radboud Universiteit Nijmegen 29

Interesting reads

19 deadly sins of
software security

by Michael Howard, David
LeBlanc, and John Viega

 The Security
Development Lifecycle

by Michael Howard and
Steve Lipner

